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Abstract

Compared with steady state data, engine transient state data cover a wider
working scope of components, more complex operating conditions, and
therefore can provide more abundant information regarding engine health
status. To make the fullest use of engine transient data, this paper presents
the methods on how to choose the proper measurements and health para-
meters when constructing an aeroengine gas path analysis system.

The measurement selection based on sensitivity analysis is conducted,
compared to which an effortless measurement selection method termed
Minimum Identifiability Loss (MIL) is proposed. Aiming to reduce the estima-
tion uncertainty, the analysis of maximal linearly independent group is pre-
sented to select optimal health parameters under the condition of limited
measurements. Finally, the component health status identifiability analysis
base on transient data also gives a good explanation to gas path analysis
“smearing effect”.

Introduction

Performance degradation of aeroengines is an inevitable problem in their
regular operations. A timely and accurate grasp of the health status of
each component is the basis of formulating a reasonable maintenance
plan to ensure flight safety and maintain the economic affordability of
engine operation. So far, nonlinear model-based steady state gas path
analysis is still a necessary means for aeroengine health monitoring.
Compared with steady state data, engine transient state data cover a
wider working scope of components, more complex operating condi-
tions, and can provide more abundant engine health information.
Therefore, the research of transient state gas path analysis has important
theoretical significance and engineering application value.
Parameter selection is an unavoidable fundamental problem in gas

path analysis. Therefore, almost synchronous with the introduction of
aeroengine gas path analysis, Urban (1975) proposed to match the mea-
sured quantities and health parameters based on the inverse of the
Influence Coefficient Matrix (ICM), that is, the fault coefficient matrix.
Subsequent research focused on the discussion of ICM. Stamatis et al.
(1992) proposed a method to quickly select health parameters based on
the projection of the health parameter vector on the corresponding sin-
gular vector of the Jacobian matrix, and determined the measurement
subset according to the results of sensitivity analysis. Provost (1994)
proposed a method to distinguish redundant measurements based on
parameter correlation analysis. España (1993) pointed out that the neces-
sary condition for an observable system is that the number of
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measurements is no less than that of the health parameters to be determined. Grönstedt (2002) judged the
optimal combinations of health parameters in different dimensions by analysing the condition number of the
system Hessian matrix. Ogaji et al. (2002) utilized measurement sensitivity to determine their ability of quantify-
ing implanted faults, and uses the Root Mean Square Error (RMSE) of the estimated results for measurement set
evaluation. Mathioudakis and Kamboukos (2006) proposed a method to determine measurements, health para-
meters and the number of operating points by analysing the condition numbers of the Jacobian matrices based
on the data of single or multiple operating points. McCusker and Danai (2010) obtained parameter signatures
by performing wavelet analyses on the small disturbance output signals during transient process, and selected the
necessary measurements accordingly. In the framework of Systematic Sensor Selection Strategy (S4), Sowers et al.
(2008) proposed to determine the optimal combination of measuring points according to their merit value, and
used the deviation of the measurements or their root mean square to judge the detectability of each health par-
ameter. Borguet and Léonard (2008) used the figure of merit, which is defined based on the characteristic quan-
tity of the system Fisher information matrix, to select the optimal measurement set, and employed the sensitivity
index and observability index to evaluate the set. Simon and Rinehart (2016) commended a measurement selec-
tion method on the basis of statistical theory.
Although the above-mentioned research on the selection of gas path analysis parameters has improved the

accuracy of engine condition monitoring, they are all based on engine steady state and cannot provide sufficient
theoretical support for engine transient state gas path analysis. In this paper, we present the methods for system
construction of transient state gas path analysis and their applications.

Methodology

Nonlinear gas path analysis

Aeroengine nonlinear condition monitoring model can be expressed as the following nonlinear equations.

_x tð Þ ¼ f x tð Þ; u tð Þ; θ tð Þð Þ (1)

z(t) ¼ g(x(t), u(t), θ(t)) (2)

The components of the health parameter vector θ in the above equations are generally defined by the ratio of
the performance parameters of the degraded or malfunctioning engine components to those of the clean engine
components, and in the form of

θi,d ¼ Xi,d

Xi,c
i ¼ 1, . . . , p (3)

In the numerical calculation of health parameter estimation, Equation 2 can be linearized at the currently esti-
mated value of the health parameters θ̂.

zd(t) � ẑ(t)þ J (t , θ̂(t)) (θd(t)� θ̂(t)) (4)

ẑ(t) ¼ g(x(t), u(t), θ̂(t)) (5)

where the Jacobian matrix

J (t , θ̂(t)) ¼

@z1(t , θ̂(t))
@θ1

� � � @z1(t , θ̂(t))
@θp

..

. . .
. ..

.

@zq(t , θ̂(t))
@θ1

� � � @zq(t , θ̂(t))
@θp

2
6666664

3
7777775 (6)

Equation 4 can be written in residual form as

Δẑ(t) ¼ J (t , θ̂(t)) Δθ̂(t) (7)
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where the estimated measurement residual (in relative form)

Δẑj(t) ¼
z j,d(t)� ẑ j(t)

z j,d(t)
j ¼ 1, . . . , q (8)

and the estimated health parameter residual

Δθ̂i(t) ¼ θi,d(t)� θ̂i(t) i ¼ 1, . . . , p (9)

Then in the kth iterative calculation, we have

θ̂
kþ1

(t) ¼ θ̂
k
(t)þ J�1(t , θ̂

k
(t))Δẑk(t) (10)

Parameter selection

Sensitivity analysis

When a certain health parameter degrades, measurements at different cross-sections or with different properties
deviate with different magnitudes or even different signs. Therefore, the traditional method (Urban, 1975)
believes that those deviations in the measurements will indicate their ability of identifying this health parameter.
Supposing θc is the health parameter of a healthy engine, then θc = I can be generated from Equation 3. Let h

be a small percentage constant (say 1%) and define the incremental vector of health parameters as

δθi ¼ 0, . . . , 0,
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{i�1

h, 0, . . . , 0
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{n�i

� �
i ¼ 1, . . . , p (11)

Substituting θc and δθi into Equation 2, we obtain

zc(t) ¼ g(x(t), u(t), θc(t)) (12)

zi(t) ¼ g(x(t), u(t), θc(t)þ δθi) i ¼ 1, . . . , p (13)

Combining Equations 12 and 13, then we obtain the sensitivity of measurement j to health parameter i at
sampling time t as

δz j,i(t) ¼
z j,i(t)� z j,c(t)

z j,c(t)
j ¼ 1, . . . , q; i ¼ 1, . . . , p (14)

Equation 14 can also be written in matrix form as

S(t) ¼
δz1,1(t) � � � δz1,p(t)

..

. . .
. ..

.

δzq,1(t) � � � δzq,p(t)

2
64

3
75 (15)

Identifiability analysis

When Equation 15 is full column rank, the health parameter corresponding to each column is identifiable. In
this paper, the singular value decomposition method is used to obtain the rank of the matrix. Then the matrix
in Equation 15 can be decomposed as

S(t) ¼ U (t)Σ(t)V T(t) (16)
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The diagonal elements of Σ(t) are the singular values of S(t) in descending order, while the number of
non-zero singular values is the rank. Each column of the unitary matrix V (t) represents one identifiable direction
in the health parameter space under the current measurement settings, and the corresponding singular value indi-
cates its degree of identifiability. The larger the singular value is, the greater the degree of stretching on the corre-
sponding direction will be when transforming from the health parameter space to the measurement space, and
then the easier to identify small changes of the health parameters. The above-mentioned health parameter space
can be represented by a hyper-ellipsoid in a dimension equal to the number of health parameters. The singular
vector and the reciprocal of the singular value correspond to the direction and relative length of the hyper-
ellipsoid axis, respectively. A two-dimensional health parameter space is schematically illustrated in Figure 1.
It is obvious that the longest axis of the hyper-ellipsoid determines the maximum span of the health parameter

space, which corresponds to the upper bound of system uncertainty. Therefore, the smallest singular value
σmin(t) can be used to measure system identifiability.

Indices definition

To describe the sensitivity of the measurements from the perspective of a whole process, it is defined here that
the Root Mean Square (RMS) sensitivity of measurement j to health parameter i as

δ�z j,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 δz
2
j,i(Tk)

N

s
j ¼ 1, . . . , q; i ¼ 1, . . . , p (17)

Two more indices are defined to describe the analysing ability of the engine health status of a given measure-
ment set. One is the Process Averaging Identifiability (PAI) in Equation 18 to indicate its identifiability, the
other is Process Averaging Root Mean Square Error (PARMSE) in Equation 19 to indicate its accuracy.

�σmin ¼
PN

k¼1 σmin(Tk)
N

(18)

�e ¼
PN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
Pp

i¼1 (θi,implanted � θ̂i(Tk))
2
)=p

q
N

(19)

Figure 1. Two-dimensional health parameter identification space.
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Results and discussion

In this section, two problems will be discussed separately: measurement selection when there is instrumental
redundancy, and health parameter selection when the number of measurements is limited.

The engine model

The engine model used for parameter selection is a separated flow turbofan engine. Figure 2 depicts the stations where
outputs are simulated. A slam acceleration process using the fuel schedule shown in Figure 3 is chosen for the analysis.

Measurement selection

Supposing there is instrumental redundancy. The candidate measurements, the health parameters to be estimated
and their implanted deviations are listed in Table 1 (subscripts are described in Figure 1), where Γ and η repre-
sent the corrected flow rate and efficiency of the corresponding component. Sensor dynamics and noise are
ignored for simplicity in this study.
To estimate all health parameters listed in Table 1, simultaneously, and avoid unnecessary instrument installa-

tion, we need to select 10 measurements among the 12 candidates in a way that is most conducive to engine
health status estimation. There will be two ways involved in this paper for measurement selection: one is sensitiv-
ity analysis-based, and the other is identifiability analysis-based.

Sensitivity analysis-based measurement selection

Equation 17 is used to calculate the RMS sensitivity of each measurement corresponding to each health param-
eter, and the results are listed in Table 2. Data from 80 sampling points (N = 80) in this transient process are
chosen for the analysis, and the sampling interval is 0.05 s. According to the data of each column in Table 2,
the descending sequence of measurement sensitivity to each health parameter can be obtained (Table 3).
Because the 6 measurements (P25, NLP, P3, NHP, P45 and T5) in the first column of Table 3 have the highest

RMS sensitivity to the corresponding health parameter, therefore they are firstly selected. Then we need to deter-
mine the optimal measurement set among the remaining C 4

6 ¼ 15 sets. The PAI and PARMSE obtained for
each set according to Equations 18 and 19 are listed in Table 4.
Since every parameter estimation process takes 90% of the implanted deviation in Table 1 as the initial value,

the initial PARMSE of all estimations is 1� 10�3. Results in Table 4 show that set 1–4, 7 and 8 are the
optimal measurement sets, which improve the PARMSE by about two orders of magnitude.

Identifiability analysis-based measurement selection

Inevitably, measurement selection results based on sensitivity analysis is susceptible to subjective factors.
Therefore, a large number of validation calculations are required. On the other hand, traditional identifiability
analysis-based methods usually adopt exhaustive strategy, so the amount of calculation would also be

Figure 2. Schematic diagram of the simulated separated flow turbofan engine.
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considerable. This paper proposes the Minimum Identifiability Loss (MIL) method, which uses identifiability as
the objective criterion and adopts exclusive strategy. Thus it avoids the influence of subjective factors and reduces
the amount of calculations.
The procedures of MIL are:

1. Calculate the PAI of the measurement set which includes all 12 candidate measurements in Table 1.
2. Calculate the PAI of the measurement set consist of 11 candidate measurements in Table 1, which means a

certain measurement will be excluded each time.

Figure 3. Fuel schedule.

Table 1. Candidate measurements and health parameters considered.

No. Candidate Measurement Health Parameter Implanted Deviation Δθi,d

1 P13 ΓFan −1%

2 T13 ηFan −1%

3 P25 ΓLPC −1%

4 T25 ηLPC −1%

5 NLP ΓHPC −1%

6 P3 ηHPC −1%

7 T3 ΓHPT 1%

8 NHP ηHPT −1%

9 P45 ΓLPT 1%

10 T45 ηLPT −1%

11 P5

12 T5
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Table 2. RMS sensitivity of the measurements (10−3).

ΓFan ηFan ΓLPC ηLPC ΓHPC ηHPC ΓHPT ηHPT ΓLPT ηLPT

P13 3.0984 2.4976 0.1972 0.6576 0.3708 1.2753 0.2788 1.6462 0.8084 3.3163

T13 0.2558 0.1255 0.0827 0.2213 0.1006 0.4394 0.0885 0.5649 0.2828 1.2326

P25 2.1836 2.3877 1.9680 0.4314 0.3496 0.9078 0.2382 1.2233 1.4424 3.2065

T25 0.5708 0.6553 0.1248 1.5240 0.0856 0.3404 0.0659 0.4436 0.2023 0.8911

NLP 3.5694 3.4729 0.2580 1.1043 0.7716 1.9664 0.4874 2.5393 1.3239 4.7548

P3 0.7290 0.5953 0.7808 0.7742 1.7717 5.6814 9.4521 9.1552 2.7518 0.7916

T3 0.5034 0.5208 0.4544 1.3850 1.5252 3.5963 2.7498 3.8819 1.4579 0.6636

NHP 1.0540 1.1456 0.5395 0.8122 3.6004 4.2324 0.9969 5.8179 2.3801 1.4922

P45 2.9968 3.0419 1.3736 2.2731 2.3946 9.7674 1.7895 12.9151 6.8005 4.0136

T45 0.8444 0.7826 0.5869 0.9755 1.2502 5.5113 0.7792 7.5278 2.5939 1.0430

P5 0.5711 0.5544 0.5155 0.1592 0.6523 2.4931 0.4757 3.2758 1.8763 2.5666

T5 0.3406 0.3728 0.8777 1.6603 1.6960 7.8476 1.1680 10.4820 1.2244 5.5336

Table 3. Descending sequence of measurement sensitivity.

Health parameter Measurement

1 2 3 4 5 …

ΓFan NLP P13 P45 P25 NHP …

ηFan NLP P45 P13 P25 NHP …

ΓLPC P25 P45 T5 P3 T45 …

ηLPC P45 T5 T25 T3 T45 …

ΓHPC NHP P45 P3 T5 T3 …

ηHPC P45 T5 P3 T45 NHP …

ΓHPT P3 T3 P45 T5 NHP …

ηHPT P45 T5 P3 T45 NHP …

ΓLPT P45 P3 T45 NHP P5 …

ηLPT T5 NLP P45 P13 P25 …
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3. Find the q-p measurement sets with the highest PAI in step 2 and exclude the measurements that are excluded
by these sets, then the remaining candidate measurements will constitute the optimal measurement set.

The previous measurement selection task is then handled again by the MIL method, the results are shown in
Table 5.
In Table 5, set 1 contains all 12 candidate measurements, while set 2 to 13 contain 11 candidate measure-

ments. Results show that set 1 has the highest PAI, and the PAI of the other sets decline diversely, among which
set 2 and set 3 have the least decline relative to set 1. Therefore, compared to other candidate measurements, T13

and T45 have the least contribution to system identifiability and are excluded firstly. Thereby we obtain an
optimal measurement set as same as the set 1 in Table 4.
Compared with sensitivity analysis-based method and traditional identifiability-based method adopting

exhaustive strategy, the MIL method adopts a simpler selecting logic, and avoids the calculation of a large
number of measurement combinations. Especially, when the number of the candidate measurements increases,
the calculation amount of the MIL method would only grow linearly.

Health parameter selection

Supposing the number of measurements is limited. A typical 7 gas path measurements set is listed in Table 6.
It is not possible to estimate all the health parameters shown in Table 1 simultaneously using the measure-

ment set given in Table 6, obviously. Therefore, we have to select the health parameter combinations that can be
better identified. The health parameter selection problem considering here has the following features:

1. Due to the varying engine nonlinearity with the operating process, the nature and quantity of the health para-
meters that can be estimated at different sampling points may also change.

Table 4. Results of sensitivity analysis-based method.

Set P13 T13 P25 T25 NLP P3 T3 NHP P45 T45 P5 T5 �σmin(10
−4) �e

1 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.38 1.30 × 10−5

2 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.32 1.31 × 10−5

3 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 3.74 1.32 × 10−5

4 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.12 1.31 × 10−5

5 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 1.01 8.98 × 10−4

6 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.90 6.52 × 10−4

7 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.49 1.32 × 10−5

8 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.15 1.37 × 10−5

9 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.12 4.22 × 10−5

10 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.06 4.32 × 10−1

11 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.04 3.85 × 10−4

12 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.04 4.72 × 10−5

13 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.00 2.40 × 10−2

14 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.00 6.71 × 10−5

15 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.00 5.21 × 10−5
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2. Because the selection process involves changes in the health parameter space, the applicability of traditional
sensitivity analysis-based and identifiability analysis-based methods would be greatly restricted.

According to the aforementioned identifiability theory, what we need to do is to construct system matrices with
full column rank in the form of Equation 15. Thereby, this paper proposes a health parameter selection method
based on maximal linearly independent group analysis, and its procedure is as follows:

1. Construct the 7� 10 system matrix at each time point based on Equation 14, and apply Equation 16 to
obtain their rank r(t).

2. Construct the 7� r(t) subsystem matrices by different health parameter combinations, and apply Equation
16 to obtain their ranks and smallest singular values.

3. Then the health parameter combinations corresponding to the full rank subsystem are regarded as feasible
combinations.

Taking the results at sampling point t = 1 s (Table 7) as an example.
Results show that the maximum number of identifiable health parameters at t = 1 s is 7, and there are 10 feas-

ible combinations, among which combination 3 has the highest identifiability (σmin) and a comparatively lower
estimation error, but combination 1 has the least identifiability and estimation accuracy. Thereby we can put the
health parameter combination with the highest identifiability at each sampling point into one best identifiability

Table 5. Results of MIL method.

Set P13 T13 P25 T25 NLP P3 T3 NHP P45 T45 P5 T5 �σmin(10
−4)

1 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.55

2 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.49

3 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.45

4 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 6.35

5 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 5.83

6 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.18

7 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.11

8 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 1.02

9 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.57

10 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.53

11 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.24

12 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.14

13 ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 0.07

Table 6. Typical gas path measurements

No. 1 2 3 4 5 6 7

Measurement P13 T13 NLP P3 T3 NHP T5
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matrix as shown in Figure 4. The order of the health parameters in Figure 4 are consistent with Table 1. Colour
blue and white represent “include” and “not include”, respectively.
It also shows that there are slightly differences of the maximum number of identifiable health parameters at

different sampling points, that is, 7 for the majority of the sampling points except 6 at t = 1.7 s and t = 1.8 s.

Smearing effect analysis

Considering the identifiability of the engine health status on a component level by the measurement set shown
in Table 6. According to the health parameters listed in Table 1, the health status of each main gas path compo-
nent is described by two health parameters. So the maximum number of components that can be analysed simul-
taneously by the measurement set shown in Table 6 is 3 at each sampling point. Therefore, theoretically, the
number of identifiable component combinations is C1

5 þ C2
5 þ C3

5 ¼ 25.
By constructing the subsystem matrix of the 25 component combinations at a certain sampling point and cal-

culating their rank, we can obtain the identifiability of these subsystems. The results are shown in Figure 5. The
left part of Figure 5 shows the component combinations, with colour black and white represent “include” and
“not include”, respectively. The right part of Figure 5 shows the identifiability of the corresponding component
combination, with colour blue and white represent “identifiable” and “unidentifiable”, respectively.

Table 7. Full rank subsystem results at sampling point t= 1 s

Combination ΓFan ηFan ΓLPC ηLPC ΓHPC ηHPC ΓHPT ηHPT ΓLPT ηLPT σmin(10
−4) RMSE

1 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 1.6202 1.68 × 10−7

2 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.4251 4.82 × 10−9

3 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 3.4983 3.56 × 10−9

4 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 3.2975 2.95 × 10−9

5 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.0767 5.62 × 10−9

6 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.6096 5.53 × 10−9

7 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.4780 4.73 × 10−9

8 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 2.5089 8.15 × 10−9

9 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 3.4910 7.90 × 10−9

10 ╳ ╳ ╳ ╳ ╳ ╳ ╳ 3.3896 2.52 × 10−9

Figure 4. Health parameter best identifiability matrix.
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Figure 5 shows that the identifiability of the component combinations vary with sampling time as well as the
number of components. In general, an increase in the number of components leads to a decrease in
identifiability.
Take combination 10 and combination 15 as examples, the estimation results of these two combinations are

shown in Figure 6. The number of combinations and sampling points are consistent with Figure 5, and the
colour green, yellow, and red represent “converged with high precision”, “converged with low precision” and
“diverged”, respectively.
Combining the results in Figures 5 and 6, unsatisfactory estimation result only occurs when the corresponding

component combination is unidentifiable. Take the results of combination 10 at t = 0.9 s and combination 15 at
t = 0.1 s as examples (Figure 7).
It is shown that there are large deviations in both cases, which means “smearing effect” occurs. Aretakis et al.

(2002) and Mathioudakis et al. (2004) firstly pointed out this phenomenon in fault diagnosis, and they also pro-
vided a solution for this problem, that is, addition of measured quantities between the corresponding compo-
nents. Based on the above results, it can be concluded that “smearing effect” is caused by the measurement set as
well as the engine nonlinearity at a certain operating point, which means only when the combination of these
two factors leads to a singular system, may this phenomenon occur. From the perspective of system identifica-
tion, “smearing effect” means an increase in system uncertainty.

Figure 5. Component identifiability matrix.

Figure 6. Estimation results of combination 10 and 15.

Figure 7. Estimation results of combination 10 at t= 0.9 s (left) and combination 15 at t= 0.1 s (right).
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Conclusions

The methods on how to choose the proper measurements and health parameters when constructing an aeroen-
gine gas path analysis system using transient data have been presented. The traditional sensitivity analysis-based
measurement selection has been conducted, and a new measurement selection method adopting exclusive strategy
has been proposed. A health parameter selection method based on maximal linearly independent group analysis
has been proposed. The root cause of “smearing effect” has been revealed. The applicability of the proposed
method has been demonstrated on a separated flow turbofan engine, and the results show that:

1. The indices defined in this paper is effective.
2. The MIL method adopts a simple selecting logic, and avoids the calculation of a large number of measure-

ment combinations.
3. Maximal linearly independent group analysis is effective to determine the optimal combination of health para-

meters at each sampling point under the condition of limited measurements.
4. “Smearing effect” is caused by measurement settings as well as engine nonlinearity, and it occurs only when

the combination of these two factors leads to a singular system at a specific working point.

Nomenclature

�e process averaging root mean square error
h small percentage constant
MIL minimum identifiability loss
N rotational speed
P total pressure
p number of health parameters
q number of measurements
RMSE root mean square error
r rank
T total temperature
t time
u engine input vector
x engine performance vector
z measurement vector
Γ health parameter (corrected flow rate)
η health parameter (efficiency)
θ health parameter vector
�σmin process averaging identifiability

Subscript

c clean engine
d degraded engine
HP high pressure
LP low pressure
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