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Abstract

Physically sound compressor and turbine maps are the key to accurate air-
craft engine performance simulations. Usually, maps only cover the speed
range between idle and full power. Simulation of starting, windmilling and
re-light requires maps with sub-idle speeds as well as pressure ratios less
than unity. Engineers outside industry, universities and research facilities
may not have access to the measured rig data or the geometrical data
needed for CFD calculations.

Whilst research has been made into low speed behavior of turbines, little
has been published and no advice is available on how to extrapolate maps.
Incompressible theory helps with the extrapolation down to zero flow as in
this region the Mach numbers are low. The zero-mass flow limit plays a
special role; its shape follows from turbine velocity triangle analysis.

Another helpful correlation is how mass flow at a pressure ratio of unity
changes with speed. The consideration of velocity triangles together with
the enthalpy-entropy diagram leads to the conclusion that in these circum-
stances flow increases linearly with speed.

In the incompressible flow region, a linear relationship exists between
torque/flow and flow. The slope is independent of speed and can be found
from the speed lines for which data are available. This knowledge helps in
extending turbine maps into the regions where pressure ratio is less than unity.

The application of the map extension method is demonstrated with an
example of a three-stage low pressure turbine designed for a business jet
engine.

Introduction

In by far the biggest area of a turbine map both the stator exit Mach
number and the rotor exit Mach number (in the relative system) are high.
In this map region the similarity laws for incompressible flow are of little
value for extrapolation purposes. However, for extending a turbine map to
the low mass flow region - where turbines operate in a windmilling engine
- correlations derived from incompressible flow theory are very helpful.

Theory

Work and flow coefficient

If we consider the form of the ψ-Φ relationship for a single stage turbine
with symmetrical velocity triangles in simple terms, we can conclude
that the work coefficient ψ is a linear function of the flow coefficient Φ.
This follows from the fact that the flow leaves a blade or vane row in the
direction given by the trailing edge geometry (see Figure 1).
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The work output H is a straight line when plotted as Ψ over Φ, whereas work input His – calculated from
pressure ratio - is not (see Figure 2).

ψ ¼ Φ � (tan β2 � tan α1)� 1 ¼ c1 �Φ� 1 (1)

The losses in the expansion process, described by efficiency η = H/His, are smallest at the peak efficiency
point.
The only prerequisite for the validity of Equation 1 is that the (relative) flow direction downstream of the

blades and vanes is enforced by the geometry of the blades and vanes. Furthermore, in an incompressible fluid
(constant density), there is only one curve for ψis = f(Φ) and this is valid for any speed.

Figure 3 shows data published by Broichhausen (1994) with lines for Ψ plotted against flow coefficient Φ.
The lower the speed, the more the Ψ-Φ correlation is a straight line.

Efficiency

Figure 4 shows the efficiency values corresponding to Figure 3. For the relative speed values 0.4, 0.6 and 0.8 the
efficiency lines collapse in the region where flow coefficients are less than Φ ≈ 1.2, where the peak efficiency
values occur.
Another efficiency correlation originates from theoretical considerations about impulse turbines. In such a

turbine the inlet guide vane works like a nozzle which produces the jet velocity V1. There is no velocity change
in the rotor of an impulse turbine (W2 =W1) as can be seen in Figure 5. Maximum efficiency is achieved when
the direction of the absolute velocity V2 at the turbine exit is axial. The ratio of U/V1 for optimum efficiency is
approximately 0.47.

Figure 2. Peak efficiency point of the ψ-Φ correlation.

Figure 1. Turbine work and flow coefficient.
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Experience from working with the maps of many single- and multi-stage turbines has shown that efficiency
generally correlates well with the speed/jet-velocity ratio. Figure 6 demonstrates this for the same turbine as used
for Figure 3.
Note that Figure 6 does not employ the absolute circumferential speed U – it uses relative speed N/Nref. The

x-axis numbers in Figure 6 therefore differ in magnitude from the value shown in Figure 5.
The correlations of efficiency with flow coefficient and speed ratio are useful only in the region with positive

effective work Heff. Efficiency is zero if effective work is zero and drops to minus infinity when pressure ratio is
1, see Figure 7.

Torque

Turbine power can be expressed as the product of flow and specific work as well as the product of angular speed
and torque:

PW ¼ m �H ¼ ω �Trq (2)

Figure 3. Ψ-Φ correlations from a turbine.

Figure 4. Efficiency corresponding to Figure 3.
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Rearrangement and insertion of Equation 1 yields

Trq
m2

¼ c2 � H
U 2

� U
m

¼ c2 � c1�Φ� 1
Φ

¼ c1 � c2 � c2 � 1
Φ

(3)

This equation is valid where flow velocity Vax is proportional to mass flow m, in the incompressible flow
region. Under this condition, Trq/m² is a linear function of 1/Φ and Trq/m is – for a given circumferential
speed U – a linear function of m:

Trq
m

¼ c1 � c2 �m� c2 �U (4)

Figure 8 shows that Equation 4 is in line with measured data in the low mass flow parts of the speed lines. The
dashed lines are exactly parallel, the horizontal distance between the lines is independent of speed. This is remark-
able because the data are from a three-stage turbine while Equation 4 has been derived for a single stage machine.
In addition to the scale for flow, Figure 8 shows a scale for Mach number. The torque/flow lines bend

upwards at Mach numbers higher than 0.4… 0.45, which is due to compressibility effects.

Figure 5. Impulse turbine.

Figure 6. Efficiency = f(N/Vjet).
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The zero-speed line

For a locked rotor, the turbine may be considered as a pipe with restrictions. Total temperature is constant
because no work is transferred. Total pressure decreases from the inlet to the exit of the turbine. For incompress-
ible flow, the zero-speed line – i.e. the pressure ratio = f(flow) correlation - is a parabola.
The locked rotor changes the direction of the fluid and downstream of the rotor this is determined by the

rotor blade exit geometry. Torque is proportional to the force in the circumferential direction which is exerted
by the fluid on the locked rotor. Equation 4 is also valid for the locked rotor.

The zero-flow line

Reverse flow never happens in turbines during starting and windmilling simulations. The zero-flow line is a
lower pressure ratio limit for the turbine map extension discussed. The velocity triangles yield interesting insights

Figure 7. Efficiency around pressure ratio 1.

Figure 8. Torque/Flow= f(Flow).
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about operation at zero flow. Figure 9 shows how the design point velocity triangles and the enthalpy-entropy
diagram look typically.
If the mass flow is reduced at the same speed to very low values and finally to zero, then the incidence to the

rotor becomes highly negative, see Figure 10.
The enthalpy-entropy diagrams for the two low mass flow velocity triangles are shown in Figure 11. From the

diagram on the right one can conclude that for the zero-flow case, the effective specific work Heff is twice as big
as the isentropic specific work His since both W1 and V2 are equal to circumferential speed U.
Corrected isentropic work His/T1 is proportional to corrected speed squared:

His

T1
/ U 2

T1
/ Nffiffiffiffiffi

T1
p
� �2

(5)

His/T1 relates to pressure ratio:

His

T1
¼ cp

T2,is � T1

T1
¼ cp

P2
P1

� �((γ�1)=γ)

� 1

" #
(6)

Thus, pressure ratio relates to corrected speed:

P2
P1

� �((γ�1)=γ)

�1 ¼ const
Nffiffiffiffiffi
T1

p
� �2

(7)

Figure 9. Velocity triangles and enthalpy-entropy diagram, turbine design point.

Figure 10. Velocity triangles for low mass flow and mass flow <ε.
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Relating the true corrected speed to a reference value makes it easy to determine the constant in this equation
because then the speed term equals unity. The difference between specific enthalpy for the temperatures T2,is

and T1 for zero flow is W1
2/2 as the right part of Figure 11 shows.

Since W1 equals U (Figure 10) it holds that

P2
P1

� �((γ�1)=γ)

¼ T2is

T1
¼ 1þ γ � 1

2
M 2

U (8)

The circumferential Mach number MU,ref at the map reference point needs to be estimated. The constant in
Equation 7 follows from Equation 9:

const ¼ γ � 1
2

M 2
U ,ref (9)

Pressure ratio for any other corrected speed follows from

P2
P1

¼ 1þ const
N=

ffiffiffiffi
T

p

N=
ffiffiffiffi
T

p� �
ref

 !2" #(γ=(γ�1))

(10)

Flow at pressure ratio 1

Figure 12 shows the velocity triangles and the enthalpy – entropy diagram for pressure ratio 1. The rotor entry
triangle is symmetrical which makes the total temperature in the relative system T1,rel equal to the inlet tempera-
ture T1. The total pressure losses of the inlet guide vane P0 - P1,rel are compensated by the rotor, which works as
a compressor.
The shape of the velocity triangles remains the same when spool speed changes, the triangles remain similar.

All enthalpy differences change in proportion to circumferential speed squared and mass flow changes in propor-
tion to circumferential speed. Therefore, the pressure ratio 1 line is linear in a plot of flow vs. speed.

Figure 11. Enthalpy-entropy diagrams corresponding to Figure 10.
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Application

The turbine map extension method described here is implemented in the most recent version of the program
Smooth T. This software is a specialized plotting routine which helps a performance engineer generate smooth
and meaningful lines through a cloud of measured or calculated data points. Many graphs show the measured
data together with the lines in figures with physically meaningful parameters to allow checking whether the result
makes sense or not.
The efficiency contour lines in a pressure ratio – speed plot for a turbine define a landscape with a broad peak

region at high speed (Figure 13). This high efficiency region becomes smaller in the mid speed range and
deforms to a narrow ridge at low speed. Small differences in pressure ratio coincide with big changes in efficiency
in this map region. Capturing the details of the efficiency ridge at low speed accurately would require a huge
number of equally distributed pressure ratio grid points. Using a rectangular grid marked with the grey circles in
Figure 13 would lead to severe accuracy problems in the low speed area. Moreover, we would have to store much
useless data – especially in the region of high pressure ratios and low speed. We never need to know the turbine
performance in that part of the map when we simulate standard gas turbine performance.
We can achieve high accuracy with a minimum number of grid points if we focus on the region of interest,

which is the peak efficiency zone. The blue circles in in Figure 13 are distributed in such a way that we get
adequate accuracy for any point of interest in the map. The blue circles are at the crossing between the speed
lines with so-called ß-lines which serve as auxiliary coordinates for reading data from the map. (Kurzke and
Halliwell 2018).

Figure 12. Pressure ratio 1.

Figure 13. The boundaries of the ß-line grid.
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Baseline map

The turbine map shown previously in Figures 3, 4, 6 and 8 serves to illustrate the map extension method. This
map is from a three-stage low pressure turbine designed for a business jet engine.
The map as shown in Figure 14 has been created using 30 ß-lines with the standard procedure described in

the Smooth T manual. The ß-line grid encloses all the given data points. The ß-numbers (between 0 and 1)
have no physical meaning. The map reference point is properly placed at the peak efficiency location of the
speed line 1.

Extension to zero flow

A new ß-line grid is required for extending the map to zero flow. The upper ß-line (ß = 1) remains unchanged,
the lower ß-line, however, will now get a physical meaning: it will represent zero-flow. This line passes through

Figure 14. Baseline map.

Figure 15. Revised ß-line grid.
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the origin (relative speed = 0, pressure ratio = 1) and bends downwards when speed increases. The shape of the
zero-flow line is given by Equation 10 and is defined implicitly by the circumferential Mach number MU for
relative speed 1.
Note that the number of ß-lines needs to be increased because the pressure ratio range is bigger. 50 ß-lines

have been used in Figure 15.
Start the map extension with a guess for the ß = 0 line by choosing MU = 0.5, for example. All the extended

flow lines begin with mass flow zero on the ß = 0 line and approach the measured data points smoothly.
Modify the assumption for MU if the lines flow = f(pressure ratio) do not merge smoothly with the part of the

line which is defined by measured data. Special attention should be paid to comparing the shape of the line for
the lowest speed with that for zero speed.
The discussion of Figure 12 lead to the conclusion that in a plot flow = f(speed) with contour lines for pressure

ratio, the line 1.0 must be a straight line. As Figure 16 shows, this is true.
Also check the correlation between isentropic work coefficient and flow coefficient (Figure 17). All speed lines

must collapse in the low flow coefficient region.

Figure 16. Constant pressure ratio lines in the plot of flow= f(speed).

Figure 17. Ψis = f(Φ).
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Next check if the torque/flow = f(flow) lines are straight in the region of low flow. That corresponds to low
Mach number and is where incompressible flow theory is applicable. Figure 18 shows how the extended map
looks now.
Equation 1 indicates that in incompressible flow the correlation between work and flow coefficients is linear

and all lines collapse. Figure 19 shows that this is truly the case in our map example.

Extension to low speed

Extending the map to low speed uses the same ß-line grid as before. Add one speed line after the other and
adapt the mass flow line first in such a way that it matches Figure 20 reasonably well.
Next check the torque/flow = f(flow) plot – in the beginning it will probably not look good. Correct the

torque/flow lines in such a way that efficiency lines up with the other data in the plot efficiency = f(speed/jet vel-
ocity), as in Figure 6.
If it is not feasible to get both efficiency and torque/flow lines right, then the form of the function flow = f

(pressure ratio) needs to be modified. Go back and modify the flow lines in such a way that the torque/flow
lines have the desired shape.

Figure 19. Ψ= f(Φ) with added speed lines.

Figure 18. Map extension to low flow.
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To get all the correlations right requires only a few iterations. The final result of the map extension process is
shown in Figures 20, 21 and 22.

Concluding remarks

The turbine map extension towards low mass flow is based on incompressible flow theory. The lower limit of
the map is the zero-flow line – negative flow will not happen during aircraft engine start and windmilling.
The advantage of the current method over using map calculation programs is that no geometry information is

needed. The accuracy of the result is more than adequate for starting and windmilling performance simulations.
The approach is implemented in the software Smooth T and has been applied successfully to many maps

from the open literature. Starting and windmill relight simulations have been demonstrated with GasTurb.
Deviations from full engine test data are expected due to uncertainties in the modeling of oil viscosity effects on
gearbox drag and bearing losses. Also, combustor light up and efficiency immediately after ignition are in some
degree random effects, and that makes an absolute agreement between model and reality improbable.

Figure 20. Torque/Flow= f(Flow).

Figure 21. Flow and specific work.
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Nomenclature

c1, c2, … constant values
cP specific heat at constant pressure
eff effective
H specific work
is isentropic
m (corrected) mass flow
M Mach number
MU circumferential Mach number
N rotational speed
P total pressure
Ps static pressure
S specific entropy
T total temperature
Trq torque
U circumferential speed
V absolute velocity
Vax axial component of V
VU circumferential component of V
W relative velocity
WU circumferential component of W
α1 stator exit flow angle
β2 rotor blade exit flow angle
β map coordinate
γ isentropic exponent
η efficiency
Φ flow coefficient Vax/U
Ψ work coefficient H/U2

Ψis isentropic work coefficient His/U
2

Π pressure ratio
ω angular speed

Figure 22. Map with extrapolated and interpolated speed lines.
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