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Abstract

This study focuses on the calibration of Spalart–Allmaras turbulence model
parameters using the Bayesian inference approach to reproduce experi-
mental measurements of corner flow separation in linear compressor
cascade. The quantity of interest selected for the calibration process is the
pitchwise distribution of Mach number in the wake of the linear compressor
cascade. The model parameters are assumed to be random variables
obeying uniform prior probability distributions. Sensitivity analysis is used to
rank the importance and select the most influential turbulence model para-
meters for the calibration process. The sensitivity ranking indicates that two
model parameters cb1 and κ are the most influential random variables
resulting in a two–parameter Bayesian calibration process. The likelihood
distribution is specified in the form of the Gauss distribution to include the
experimental uncertainty. The likelihood distribution is used together with
prior distribution to compute posterior probabilities of selected model para-
meters. The polynomial chaos expansion is employed as a surrogate model
to reduce the cost of posterior calculation. Numerical simulations with cali-
brated turbulence parameters show a significant increase in the accuracy of
Mach number profile prediction for separated flows in linear compressor
cascade. Numerical simulations also demonstrate that the calibrated set of
model coefficients produce accurate predictions of the total pressure and
Mach number profiles for the range of incidence angles that were not part
of the calibration process.

Introduction

Continued growth of computational power over the past decades has
enabled the successful application of computational fluid dynamics
(CFD) in all stages of the aero–engine design cycle. Despite the achieved
progress in CFD simulation practice, Reynolds Averaged Navier–Stokes
(RANS) simulations still play a crucial role in the CFD enabled design
cycle. RANS–based simulations impose a significantly lower computa-
tional cost, in terms of memory usage and simulation time. For turbo-
machinery applications, the typical RANS turbulence models are based
on the Boussinesq assumption (Pope, 2011) and additional turbulence
transport equations that provide a closure for the computation Reynolds
stress. The Spalart–Allmaras model (Spalart and Allmaras, 1992) is an
example of a one–equation turbulence transport model often used in the
gas turbine community. However, despite the RANS simulations’ com-
putational efficiency using the Spalart–Allmaras model, there are still
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significant discrepancies between computed results and measured data. This realization leads to the question; is it
possible to maintain computational efficiency while increasing simulation accuracy?
Recently, Bayesian analysis (Beck and Katafygiotis, 1998; Bretthorst, 1990) has been proposed to address the

question of RANS turbulence model calibration towards increased prediction accuracy without computational
efficiency loss (Cheung et al., 2011; Edeling et al., 2014a, b). The Bayesian analysis applied to epistemic uncer-
tainty (Dalbey et al., 2020) of turbulence model parameters defines the calibration framework that enables quan-
tification of the plausibility of the given turbulence model to predict the experimentally observed data. The
plausibility in this context is defined through the posterior distribution of parameter values that enables deter-
mination of maximum a posteriori (MAP) value. We note that it is possible to analyze the model inadequacy
using the Bayesian analysis (Oliver and Moser, 2011), but in this study, we limit our analysis to the epistemic
uncertainty of model coefficients. The main idea of epistemic uncertainty quantification in Bayesian analysis is
the representation of a random function’s lack of knowledge of parameters with an associated prior probability
distribution. The introduction of random variables, in the otherwise deterministic model, enables the model cali-
bration through Bayesian inference. It should be noted that the introduction of random variables in the turbu-
lence model is a model of uncertainty that does not change the physical nature of the turbulence model.
Kennedy and O’Hagan (Kennedy and O’Hagan, 2000) have established the principles and taxonomy of the

Bayesian method of analysis applied to computer models. In the seminal work Kennedy and O’Hagan establish
broad–reaching definitions including parameter uncertainties, model inadequacy, residual variability, parametric
variability, observation error, and code uncertainty. In addition to named definitions, Kennedy and O’Hagan
establish the principles of Bayesian model calibration that have been used in subsequent calibration works. Oliver
and Moser (Oliver and Moser, 2011) used the established definitions and Bayesian model framework to treat the
epistemic and model inadequacy of several RANS turbulence models. Related work by Cheung et al. (Cheung
et al., 2011) used Bayesian analysis for the calibration of the Spalart–Allmaras turbulence model coefficients, and
model inadequacy, to reproduce the turbulent boundary layer profile over the flat plate. A comprehensive review
of turbulence model uncertainties is given in Xiao and Cinnella (Xiao and Cinnella, 2018). Recently, de Zordo–
Banliat et al. (de Zordo-Banliat et al., 2020) applied Bayesian analysis to compressor cascades to produce a set of
calibrated turbulence model parameters with emphasis on the turbulence model inadequacy. Many other
researchers have used Bayesian inference (Tagade and Sudhaker, 2009; Yıldızturan, 2012; Guillas et al., 2014;
Ray et al., 2014; Xie and Xu, 2019) for the calibration of RANS model parameters with success. It should be
noted that while a significant amount of research has shown the potential of Bayesian inference to improve the
accuracy of RANS models, most works focused on two–dimensional flows. In this work, we apply Bayesian infer-
ence to RANS model parameter calibration for the three–dimensional non-equilibrium flow problem of a com-
pressor cascade with the corner separation (Lang et al., 2019).
Corner separation is one of the key phenomena for predicting compressor performance. Corner flow separation

appearance and size of the separated flow region has a significant impact on mass flow, efficiency and stall
margin that affects both on- and off-design performance of compressors. Although it is known that high fidelity
eddy resolving simulation such DES and LES are reliable tools for accurate off-design flow prediction, the com-
putational cost associated with these methods is unacceptable in the design process. On the other hand, RANS
CFD is standard design tool thanks to its numerical robustness and short turn around time. However, RANS
simulations are known to have difficulties predicting the non-equilibrium flow phenomena characterizing sepa-
rated flows. While Spalart-Allmaras model has been successfully used for the prediction in turbomachinery prac-
tice, it fails to predict corner separation in compressor cascades if the standard set of model coefficients are used.
On the other hand, de Zordo–Banliat et al. (de Zordo-Banliat et al., 2020) demonstrate that improvement of
the prediction of compressor cascade flows can be achieved if the Bayesian calibration is used to reproduce the
experimental profiles. In this work we demonstrate that the set of coefficients proposed in de Zordo–Banliat
et al. are not adequate for the prediction of separated flows. We propose a new set of calibrated coefficients that
improve the ability of Spalart-Allmaras model to predict corner flow separation. We also demonstrate that the set
of calibrated coefficients proposed in this work retain their predictive capability even when applied to simulations
with incidence angles outside of the calibration range, thus demonstrating the predictive capabilities of the pro-
posed calibration set.
Calibration of RANS models is a formidable task mainly due to a number of parameters and associated uncer-

tainties that have to be taken into account in the Bayesian inference approach. For example, the Spalart–Allmaras
model has seven adjustable parameters, thus making the parameter seven–dimensional. Each parameter has a
prior probability distribution associated with it used in conjunction with the corresponding likelihood function
for the posterior distribution. Therefore, the dimension of the posterior distribution associated with the Spalart–
Allmaras model is also seven. Since the Bayesian inference requires evaluating the posterior probability function
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to determine the MAP values of all parameters, the high–dimensional nature of the posterior function presents a
computational challenge. Clearly, using the original calculation methods for complex three–dimensional flows is
not feasible; a more efficient approach is required. In this work, we use a surrogate model combined with the
parameter sensitivity analysis to decrease the cost of the Bayesian calibration of parameter values.
The main idea of reducing the computational cost of Bayesian inference is to replace expensive CFD computa-

tion with a surrogate model. One approach utilized in this work is the employment of the generalized polyno-
mial chaos (gPC) (Eldred, 2009; Marzouk and Xiu, 2009) to replace expensive three–dimensional computations
with a simple function evaluation (Cheung et al., 2011; Lu et al., 2015). The main idea of the gPC is the cre-
ation of the spectral representation of the underlying implicit function (CFD simulation) and its dependence on
parameter values through using the prescribed function basis and corresponding amplitudes. In this work, we use
the gPC framework to construct the CFD simulation data’s surrogate model to remove the computational cost
associated with the evaluation of the posterior function.
The paper’s organization is as follows: we first introduce the Bayesian framework ideas, followed by a descrip-

tion of the experiment and numerical simulation. We then discuss in detail the surrogate mode construction and
calibration of turbulence model parameters. Results of the calibrated turbulence model simulations are presented
next, and compared to the experiment data. Finally, we present conclusions and discuss future research direction.

Calibration framework

SA model calibrated parameters were calculated from the posterior distribution obtained using Bayes’ theorem;
where prior knowledge and likelihood, computed from those input data are combined.

pposterior(θjd ) ¼ plikelihood(d jθ)pprior(θ)
p(d )

(1)

Calculation of the posterior requires prior knowledge and the likelihood function obtained using experimental
data, d, and parameterized model coefficients, θ. Since the denominator is independent of the parameter vari-
ation, θ, normalization of Equation (1) can be omitted as shown in Equation (2).

pposterior(θjd )/ plikelihood(d jθ)pprior(θ) (2)

The turbulence model parameters, θ, are considered as random variables in this study. Thus, Bayes’ theorem
allows inferences to be made about their true values given data via the posterior distribution.
The prior distribution quantifies prior knowledge, or belief in the parameter values, prior to consideration of

new data. In this study, we assume a uniform prior distribution in order to provide a non-informative prior
belief in the parameter values. The likelihood function represents the probability of obtaining the experiment
data given the parameters, θ, but is regarded as a function of θ for given data, d. The calibrated turbulence
model parameters were determined from the MAP (Gelman, 2014).

Likelihood

Proper construction of the likelihood function has a pivotal role in the calibration process. To account for meas-
urement uncertainty in the likelihood function the experimental data was related to the true data using Equation
(3), where dtrue is true value of the data and eexp represents experimental error.

d ¼ dtrue þ eexp (3)

The error is assumed to be a Gaussian random variable with zero mean and prescribed standard deviation, σe:

eexp � N (0, σe) (4)

Furthermore, the true data were related to the model parameters via a forward model, M(θ):

dtrue ¼ M(θ) (5)
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Thus, the likelihood takes the form shown in Equation (6).

plikelihood(d jθ) ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2e

p exp
d �M(θ)

2σ2e

� �
(6)

Equation (6) can be expressed in vector form when the experimental data are regarded as a vector:

plikelihood(djθ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2π)N jλj

q exp � 1
2
δT λ�1δ

� �
(7)

δ ¼ d �M(θ), λ ¼ σeI (8)

where N corresponds to number of observations contained within d and M(θ). λ is a diagonal matrix when the
data observations are independent of one another. The forward model was approximated using a surrogate model
in order to reduce computational expense (Cheung et al., 2011; Zhang and Fu, 2018).

Surrogate model

The surrogate model was constructed using generalized polynomial chaos (gPC). With this approach, a function
of random parameters is represented as an infinite sum:

f (x, t , ξ) ¼
X1
i¼0

ai(x, t)ψ i(ξ) ¼ a0ψ0 þ a1ψ1 þ a2ψ2 þ � � � (9)

where ai are the expansion coefficients, ψ i are the basis functions, x is a vector of spatial coordinates, t is time,
and ξ is a vector of random parameters. The gPC coefficients represent the deterministic component of the
expansion, while the basis functions represent the stochastic component. The basis functions were chosen to be
Legendre polynomials. This choice was guided by the Weiner-Askey scheme, which identifies Legendre polyno-
mials as an optimal choice for uniformly distributed random variables. In practice, the infinite sum is truncated
to a finite series, i.e.

f (x, t , ξ) �
XN
i¼0

ai(x, t)ψ i(ξ) (10)

where N is the order of the gPC expansion. Note that the time coordinate is dropped in further discussion since
the case study under consideration was steady state.
The gPC coefficients were computed using spectral projection:

ai ¼ k f , ψ il
kψ i, ψ il

¼ 1
kψ i, ψ il

ð
Ω
f (x, ξ)ψ i(ξ) ρ(ξ)dξ (11)

where k�, �l denotes the weighted inner product, Ω is the support of the random parameters, dξ ¼ dξ1dξ2 . . .,
and ρ(ξ) is the joint probability density function. The integral in Equation (11) was evaluated using tensor
product quadrature, thus constituting a pseudospectral method.
Prior to the calibration, SA model sensitivity to parameter variation was analyzed in order to determine which

random parameters were most significant in the surrogate model. The sensitivity for each random parameter was
determined by first computing the gPC expansion for all parameters:

fj (x, ξj) ¼
XN
i¼0

ai(x)ψ i(ξj) (12)
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where the subscript j [ N0 is a index representing a single random parameter. The variance of each expansion
was then computed by

σ2j ¼
XN
i¼1

a2i kψ i, ψ il (13)

where σ2j is the variance for a single parameter (Eldred, 2009). The variance is generally a function of space, x.
Thus, the arithmetic average of the variance was computed in order to quantify a global sensitivity for the region
of interest defined by the bounds of x:

ηj ¼ �σj ¼ 1
n

Xn
m¼1

σ j,m (14)

where n is the number of points in the region of interest. Lastly, a threshold, ηmin, was specified whereby the
most significant terms had a sensitivity larger than the threshold, i.e. ηj . ηmin.
The surrogate model was then constructed using Equation (10) and a subset of the full random parameter set:

f (x, ξ) � f (x, ξsub) ¼
XN
i¼0

ai(x)ψ i(ξsub) (15)

where ξsub are the most important random parameters, determined from the sensitivity analysis. Note, in this
study the random vector θ from the previous section is equal to ξsub, i.e. θ ¼ ξsub. Thus, the forward model was
approximated using gPC by

M(θ) ¼ f (x, ξsub) (16)

where the dependence of M on x has been suppressed for succinctness (Zhang and Fu, 2018).

Case study

The linear compressor cascade recently tested in RWTH Aachen university (Lang et al., 2019) was used in this
work to provide the experimental results for both calibration and validation of the calibrated turbulence model.
To represent the compressor flow physics as closely as possible, the Reynolds number based on chord length of
the experimental setup was set to 106 while the inlet Mach number was set to 0.7. The airfoil was newly
designed for the test to simulate high-pressure compressor flow. The experimental setup is depicted in Figure 1.

Experimental measurements

Aerodynamic measurements of the flow entering and exiting the cascade row were acquired at 52% chord
upstream of airfoil leading edge and 32% chord downstream from the trailing edge, respectively. At the inlet

Figure 1. Schematic of linear compressor cascade in RWTH Aachen university.
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rating station (MP1a), the recorded total pressure was 1:36� 105 Pa and the total temperature was 320 K. The
incoming flow angle was approximately 54.5 degrees. Note, that the inlet flow angle differed from design by
approximately two degrees. The inlet turbulent intensity of 3% was obtained via hotwire measurement. Detailed
five-hole probe surveys at the exit rating station (MP2) were obtained between 10% and 90% span across two
passages. The experimental uncertainty of total pressure measurement was determined to be +150 Pa (corre-
sponding to a +0:003 uncertainty in Mach number). For additional details regarding experimental setup and
measurements, see (Lang et al., 2019).

Numerical simulation

Numerical simulations of the Aachen University cascade were executed using UPACS solver (Tani, 2018), devel-
oped initially by JAXA ( Japan Aerospace Exploration Agency). UPACS is a density-based finite volume solver.
For the convection term, the Roe scheme with third order MUSCL interpolation is applied, and second order
central difference scheme is used for the viscous term.
Closure of the governing equations was achieved using the Spalart–Allmaras turbulence model (SA). The SA

model solves a single transport equation for modified turbulent viscosity, shown in Equation (17), to calculate
the eddy viscosity relating turbulent stresses to the mean flow. The calibration parameters were chosen from the
set of seven model coefficients in Equation (19).

@ν̂

@t
þ ui

@ν̂

@xi
¼ cb1~Sν̂� cw1fw

ν̂

d

� �2

þ 1
σ

@

@xj
(νþ ν̂)

@ν̂

@xj

� �
þ cb2

@ν̂

@xj

� �2
" #

(17)

νt ¼ν̂fv1, fv1 ¼ χ3

χ3 þ c3v1
, χ ;

ν̂

ν
,

~S ;S þ ν̂

κ2d 2
fv2, fv2 ¼ 1� χ

1þ χfv1
,

fw ¼g
1þ c6w3
g6 þ c6w3

� �(1=6)
, g ¼ r þ cw2(r6 � r), r ;

ν̂
~Sκ2d 2

(18)

cb1 ¼ 0:1355, cb2 ¼ 0:622, cw1 ¼ cb1=κ þ (1þ cb2)=σ,

cw2 ¼ 0:3, cw3 ¼ 2, cv1 ¼ 7:1, σ ¼ 2=3, κ ¼ 0:41
(19)

Figure 2a shows the computational domain used in this study. To reduce the computational cost of the simu-
lations the upper and lower sidewall effects were assumed to be negligible and the flow through the cascade peri-
odic, therefore only a single pitch was modeled. The ratio of fillet radius to chord length, R/Cx, was 1/15 in the
actual geometry and was included in the CFD model. The inlet boundary condition was specified using the
experimentally measured total pressure, total temperature, flow angle, and turbulent intensity. The inlet modified
turbulent viscosity was estimated from experimental turbulent intensity, turbulent length scale, and mean flow
velocity. Radial profiles were specified to account for the endwall boundary layers. A static pressure boundary
condition was applied to the outlet of the domain and was adjusted to achieve agreement with the experimental
inlet Mach number of 0.7.

Figure 2. Linear compressor cascade (a) computational domain with the airfoil and hub endwall surfaces shown

(other surfaces hidden) and (b) grid around airfoil surface at midspan.
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A grid independence study was completed using three computational grids with resolutions of 3.2, 6.8, and
17.3 million cells. Based on area–averaged quantities, a grid independent solution was achieved with a resolution
of 6.8 million cells. All simulation results in the following sections were obtained using the 6.8 million cell grid.
A cross–sectional view of the airfoil grid is shown in Figure 2b. The spanwise direction consisted of 188 points
with higher density near the endwalls. The airfoil and endwall boundary layer meshes were constructed to have a
first cell height of yþ � 1.

Surrogate model construction

Seven turbulence model parameters were considered for calibration in this study: [cb1, cb2, cw2, cw3, cv1, σ, κ].
Several parameters of interest were initially considered for this study. After consideration of the available choices,
Mach magnitude was chosen as the parameter of interest for the following reasons:

1. it was readily available from the experimental data set,
2. it was nondimensional, and
3. it clearly showed evidence of the corner flow separation.

Prior to constructing the surrogate model, a sensitivity analysis was done to determine the most influential para-
meters of the set. Less influential parameters were then discarded from the calibration set in order to reduce com-
putational cost while maintaining sufficient accuracy for the model calibration. The sensitivity analysis was done
by computing a 1st–order gPC expansion for each parameter. This choice was motivated by the low computa-
tional cost and provided sufficient accuracy to quickly narrow down the most important parameters. Note that
the chosen accuracy would have been reconsidered if the calibration had yielded unsatisfactory results. The para-
meters were assumed to be uniformly distributed on the interval [100%, 200%] of the default value. The coeffi-
cients were determined by pseudospectral projection and Clenshaw–Curtis quadrature rules for each parameter.
Thus, the model was evaluated twice per parameter for a total of 14 evaluations.
The model evaluations are shown in Figure 3a. The curves correspond to the expected value of Mach magni-

tude at 90% span in the downstream measurement plane, which is a region of interest due to the corner separ-
ation. The vertical bars represent +1σ for each spatial location and random parameter. The minimum Mach
number in the wake was found near 0.60 normalized pitch and showed the largest variation between evaluations.
The global sensitivity was determined by computing the arithmetic average of the standard deviation for each
Mach magnitude profile. The sensitivity for each parameter is shown and compared in Figure 3. The threshold
value was chosen to be 0:010. Consequently, cb1 and κ were identified as the most influential and chosen
for model calibration. The parameter cb1 is related to turbulence production while κ is related to the log–law
slope in the boundary. The model calibration was achieved primarily through modification of these two
physical aspects.
The surrogate model of Equation (15) was constructed using a 4th–order gPC expansion and the parameter

set [cb1, κ]. The parameters were again assumed to be uniformly distributed on the interval [100%, 200%] of
the default value. The parameters were assumed to be independent and the joint probability distribution is
shown in Figure 4a. The interval was chosen to ensure that the calibrated flow field could reproduce the experi-
mental data. The coefficients were computed using pseudospectral projection and Gauss–Legendre quadrature

Figure 3. Sensitivity analysis in downstream wake region: (a) Wake profiles at all quadrature points and

(b) Sensitivities for all seven parameters considered.

J. Glob. Power Propuls. Soc. | 2021 | Special Issue: Data-Driven Modelling and High-Fidelity Simulations: 1–16 | https://doi.org/10.33737/jgpps/135174 7

Matsui et al. | Calibration of Spalart-Allmaras model for corner separation http://www.journalssystem.com/jgpps/,135174,0,2.html

https://doi.org/10.33737/jgpps/135174
http://www.journalssystem.com/jgpps/,135174,0,2.html


rules for each parameter. Thus, five quadrature nodes were required for each parameter and the resulting tensor–
product grid is shown in Figure 4b.
The model was evaluated at the 25 quadrature nodes and the gPC expansion was constructed for the Mach

magnitude. The expected value of Mach magnitude is compared with experiment data in Figure 5. Both data
sets correspond to 90% span in the downstream measurement plane and are sampled on the same pitchwise
coordinates. Note that the data sets were shifted to match the location of minimum Mach number because no
reference position was available from the experiment data. The vertical bars on the expected value curve represent
+1σ while the vertical bars on the experiment data represent experimental uncertainty. The experiment data
were not well–predicted by the expected value, particularly near the location of minimum Mach number where
the observed differences were larger than +1σ. Thus this provided the first evidence that the calibrated coeffi-
cients would differ significantly from their nominal values.

Parameter calibration

Mach magnitude was chosen as the parameter of interest for the reasons provided in the previous section. The
calibration data set was then chosen to be the experiment Mach magnitude profile at 90% span in the down-
stream measurement plane. This location was chosen specifically for its direct correspondence with the corner
separation. Furthermore, this selection also demonstrated the calibration method’s effectiveness even when using
a limited data set. For example, later we compare the calibrated model’s total pressure prediction with
experiment.
Figure 6 shows components of the calibration process.The gPC surrogate model was constructed for Mach

magnitude at each point of the profile. An example response surface from the gPC surrogate model is shown in
Figure 6a. The probability density function (pdf ) computed from gPC was compared with the experiment data

Figure 4. Prior assumption and corresponding nodes for cb1 and κ: (a) Joint probability distribution illustrated with

random samples and (b) Tensor-product Legendre quadrature nodes.

Figure 5. Wake profile of experimental data and gPC surrogate model.
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pdf which was prescribed by Equations (3) and (4). The likelihood function quantifies the probability of the
obtaining the experiment data given the model parameters but is interpreted as a function of the model para-
meters. An example likelihood is shown in Figure 6c for a given experiment data point.
The posterior at each data point was constructed according the Bayes’ Theorem (Equation 1). The final poster-

ior was then defined as the product of all posteriors, i.e.:

p(θjd) ¼def
Yn
i¼1

pi(θjdi) (20)

where n ¼ 40 is the total number of points in the experiment data set. The calibrated parameters were then
determined as the parameters which corresponded to the MAP of the posterior. The resulting posterior and
MAP location are shown in Figure 7. The parameter cb1 is located on the abscissa and κ on the ordinate. The
calibrated parameters identified by the MAP were cb1 ¼ 0:268 and κ ¼ 0:44. The parameters were well informed
by the experiment data as indicated by the sharp peak near the MAP value. Note that the MAP value was
located near the limits of the prior distribution and slightly outside of the quadrature nodes. Improved optimiza-
tion may be realized by refining the surrogate model in this region. This was deemed unnecessary for this analysis
since the predictive capability of the SA model was improved to a satisfactory level. The CFD model was reevalu-
ated using the calibrated parameters and a detailed comparison of the calibrated model with experimental data is
discussed in the next section.

Calibrated result

Calibrated parameter values larger than nominal, for both cb1 and κ, were also reported for a similar study
focused on SA turbulence model calibration for compressor cascades (de Zordo-Banliat et al., 2020). While the
optimal parameter values presented herein are larger, de Zordo–Banliat et al. indicated that numerical instabilities
limited the use of larger parameter distribution intervals and as such restricting the posterior distribution of the

Figure 6. A single point calibration process: (a) gPC response surface, (b) experimental data and gPC surrogate

model output, and (c) likelihood.
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calibration. Additionally, the previous calibration was done for two-dimensional cascade flow instead of the
three–dimensional problem considered in this work. Lastly, the current calibration differs from that of de
Zordo–Banliat et al. both in selection of parameters of interest and calibrated inlet flow incidence angle.
The following include results for three SA model parameter sets: (1) parameter values calibrated using Bayesian

inference approach defined in the current study (“calibrated”), (2) nominal SA model parameters (“default”), and (3)
scenario 2 parameter values reported by de Zordo-Banliat et al. (2020) (“reference”). First, the effect of the calibrated
parameters on the numerical result are described. Next, the calibrated model is compared to experiment data, the
“default” result, and the “reference” result at the design condition. Lastly, the predictive capability of the calibrated
model was assessed and compared to the previously mentioned data sets at off–design incidence angles.

Influence of parameter calibration

Calibration of the SA model parameters cb1 and κ directly impacts the calculated turbulent viscosity by modify-
ing the transport equation (Equation (17)). This effect is easily identifiable in the cascade wake at MP2, shown
in Figures 8 and 9. The turbulent viscosity ratio used to highlight the effect is defined as the SA model turbulent
viscosity normalized by molecular viscosity. The single pitch turbulent viscosity ratio distributions obtained from
both “calibrated” and “default” simulations are shown in Figure 8. The area between the lightly shaded regions,
near the endwalls, are associated with the experimental measurement bounds spanning from 10% and 90%
span. The distribution obtained from the calibrated simulation shows an increased turbulent viscosity ratio in the
separated corner flow region (near 10% and 90% span) and in the airfoil wake. This effect is primarily attributed
to the increased value of cb1 used in the calculation of turbulence production. Pitchwise profiles of turbulent

Figure 7. Posterior distribution for wake profile. Legendre collocation points are represented as black dots and the

MAP parameter location is indicated with a red dot.

Figure 8. Turbulent viscosity normalized by molecular viscosity at MP2 for numerical solutions using (a) calibrated

SA model parameters and (b) default model parameters.
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viscosity ratio extracted from both “calibrated” and “default” CFD results are shown in Figure 9. An increased
turbulent viscosity ratio across the full pitch was observed at 90% span where the flow structure is strongly three-
dimensional, shown in Figure 9b. Near the corner separation vortex, located at 0.6 normalized pitch, the
maximum turbulent viscosity ratio is shown to increased by a factor of 1.5 using the calibrated parameters. A sig-
nificant increase in turbulent viscosity was also observed at 50% span near the airfoil wake, shown in Figure 9a.
Additionally, Figure 9a shows that the calibrated wake turbulent viscosity ratio is distributed over a larger normal-
ized pitch distance before decaying in the passage flow. These changes in the wake turbulence show that the par-
ameter calibration effect locally effect the highly turbulent regions of the wake flow, as intended.
Equation (21) shows the theoretical form of the log layer velocity profile. Here, κ controls the slope of the log

layer, and in the SA model, the constant is used to keep this log layer behavior. Wall-normal profiles related to
velocity and turbulent vicscosity in the airfoil boundary layer were extracted at multiple axial locations to identify
effects of calibrated parameter value, κ. Figure 10 shows 90% span airfoil boundary layer profiles extracted from

Figure 9. MP2 profiles of the wake turbulent viscosity normalized by molecular viscosity in the pitchwise direction

at (a) 50% and (b) 90% span.

Figure 10. Comparison of dimensionless streamwise velocity (uþ) with respect to wall distance (yþ) calculated using

Equation (21) and numerically at axial locations of (a) 20% Cx, (b) 50% Cx, (c) and 80% Cx. Log-law profiles, calcu-

lated for κ ¼ 0:41 and κ ¼ 0:44 are plotted for reference.
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calibrated and default simulations at three axial chord locations. The increased magnitude of κ resulted in a log
layer slope reduction. This behavior is consistent with the form of Equation (21), where increasing κ reduces the
log layer slope

uþ ¼ 1
κ
ln(yþ)þ C (21)

Wall-normal profiles of Mach number and turbulent viscosity are also shown in Figure 11. In addition, the
“calibrated” and “default” boundary layer displacement thicknesses are plotted near the vertical axis. At 20% and
50% axial chord, the “calibrated” boundary layer thickness is shown to be consistent with the “default” results.
However, at 80% chord the “calibrated” results show a increase in the turbulent viscosity growth and decrease in
the boundary layer thickness. This result coincides with the reduction in corner separation area that will be dis-
cussed further in the next section.
The 50% span blade loading and wake Mach number profiles are shown in Figure 12 to assess the overall

impact of changes to the modeled turbulence observed in the boundary layer and cascade, resulting from the par-
ameter calibration. The horizontal axis is normalized chord and the vertical axis is blade Mach number. The
“calibrated” midspan loading result in Figure 12a shows the flow accelerating over the suction side, near
the airfoil leading edge and reduced error with respect to experimental measurements. This coincides with the
improved prediction of corner separation, resulting blockage, and incidence change effects of the parameter cali-
bration. The remaining disagreement between experimental data and “calibrated” results was associated with
measurement uncertainty, geometric/periodicity error, two parameter limited calibration, and choice of experi-
mental data used in the calibration framework.
Figure 12b shows that both parameter sets (“calibrated” and “default”) predict an offset peak wake deficit with

respect to measurements. The “reference” results were observed to under predict the wake deficit while the “cali-
brated” and “default” simulations show good agreement with experimental data. All three parameter sets over-
predict the recovery Mach number outside of the suction side wake (lower values of normalized pitch). The

Figure 11. Airfoil wall-normal profiles of Mach Number (solid line) and Turbulent Viscosity normalized by molecular

viscosity (dashed line) at 90% span and axial locations of (a) 20% Cx, (b) 50% Cx, and (c) 80% Cx from simulations

using default and calibrated model parameters. Displacement thickness (+) is plotted for reference.
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results in Figure 12 showed marginal, yet positive, solution influence outside of the corner separation region.
Further optimization to include the mid-span region may be possible by including more experimental data into
the calibration data set. Since the calibration is focused primarily on improving prediction of corner separation,
further optimization was deemed unnecessary.

Prediction of corner separation

Results in this section are focused on the effectiveness of the calibration to improve prediction of corner separ-
ation at the design condition. Figure 13 shows a comparison of the measured Mach number distribution at MP2
with the “calibrated” and “default” results. The general wake structure obtained from both “calibrated” and
“default” simulation results show a qualitative agreement with experimental measurements. However, the “cali-
brated” results show a decrease in the spanwise and pitchwise extent of the secondary flow effects in the corner
separation region when compared to the “default” results. This effect is highlighted in the 90% span pitchwise
profiles, shown in Figure 14. The parameter calibration is shown to reduce the numerical error, with respect to
measurements, in the prediction of corner separation wake Mach number (Figure 14a) and total–to–total pres-
sure ratio (Figure 14b) compared to the “default” result. Additionally, in comparison to the “reference” results,
the “calibrated” simulation shows improvements in predictive capability across the passage width. This result
shows the effectiveness of the parameter calibration to reduce over–prediction of the corner separation losses and
flatten the wake profiles in areas of the flow where both “default” and “reference” results fail.
The combination of the aforementioned results have shown that turbulence model parameter calibration via

Bayesian inference is a capable of improving the prediction of corner separation. Surface flow visualization,
shown in Figure 15, clearly shows that the calibrated CFD reduces the over predicted size of the separation

Figure 12. Comparison of (a) cascade airfoil loading Mach magnitude profile for measurements (exp.), simulation

using calibrated model parameters (calibrated) and simulation using default model parameters (default) and

(b) wake Mach magnitude profile for measurements (exp.), simulation using calibrated model parameters (cali-

brated), simulation using default model parameters (default), and simulation using reference model parameters (ref.)

Figure 13. Two-dimensional wake Mach number distribution at MP2: (a) experimental data, (b) calibrated CFD and

(c) default CFD.

J. Glob. Power Propuls. Soc. | 2021 | Special Issue: Data-Driven Modelling and High-Fidelity Simulations: 1–16 | https://doi.org/10.33737/jgpps/135174 13

Matsui et al. | Calibration of Spalart-Allmaras model for corner separation http://www.journalssystem.com/jgpps/,135174,0,2.html

https://doi.org/10.33737/jgpps/135174
http://www.journalssystem.com/jgpps/,135174,0,2.html


region computed using default turbulence model parameters. In addition the calibrated results are qualitatively in
agreement with the experimentally measured corner separation area, indicated by dotted lines.

Off-design application

The predictive capability of the calibrated model was assessed by comparing the calibrated result to experiment at
off–design incidence angle. Experiment measurements of Mach magnitude in the downstream measurement
plane (MP2) were available for the following off–design incidence angles: �5�, �3�, þ3�, and þ5�. The cali-
brated result was also compared to the “default” and “reference” parameter sets as described at the beginning of
this section. Figure 16 shows the Mach magnitude profile at 90% span in the downstream measurement plane
(MP2). As in the previous section, each subfigure shows the result from each parameter set and the measurement
from experiment. The vertical error bars on the experiment curve represent experiment uncertainty.
The influence of the corner separation increased with increasing incidence angle. This was observed in the

decreasing minimum Mach number, e.g. 0.31, 0.24, and 0.21 for 0�, þ3�, and þ5� incidence angles respect-
ively. This trend was directly attributable to the increased suction surface adverse pressure gradient and increased
cross–passage pressure gradient at the blade endwall. At negative incidence angles, the corner separation influence
decreased as evident again by the minimum Mach magnitude. The calibrated model predicted the Mach magni-
tude profile with improved accuracy over the “default” and “reference” parameter sets, particularly near the
region of minimum Mach magnitude. The predictive capability was noticeably better for positive incidence
angles than negative. In addition, the calibrated model’s predictive capability for the total pressure profile also
improved and was more accurate than the “default” and “reference parameter sets”. The trends are similar for the
Mach magnitude profiles and therefore the profiles are not shown for brevity. The improved predictive capability

Figure 15. Visualization of surface restricted flow resulting from corner separation from (a) experimental measure-

ments, (b) calibrated parameter simulation, and (c) default parameter simulation.

Figure 14. Pitchwise (a) Mach number and (b) total-to-total pressure ratio profiles obtained from measurement

(exp.), simulation using default model parameters (default), simulation using calibrated model parameters (cali-

brated), and simulation using reference calibrated model parameters (ref.) at 90% span.
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of the calibrated model demonstrates the robustness and effectiveness of the calibration technique and highlights
the difficulty in generating a optimized parameter set for all flow conditions.

Conclusion

Bayesian inference was used to calibrate RANS turbulence model parameters and improve flow prediction in a
linear compressor cascade. The Bayesian calibration framework was developed and construction of the likelihood
function was shown. A surrogate model was also constructed via generalized polynomial chaos (gPC) in order to
reduce computational cost. Sensitivity analysis was used to reduce the parameter set and further decrease compu-
tational cost while maintaining sufficient accuracy. The posterior probability distribution was computed and the
calibrated parameters were determined from the maximum a posteriori (MAP) value.
The calibration framework was applied on corner separation in a linear compressor cascade. Previous experi-

ments provided the data set used for calibration. The numerical model was 3D steady state RANS and used the
Spalart-Allmaras turbulence model. The quantity of interest (QOI) for calibration was Mach magnitude at 90%
span in the downstream measurement plane. This location was chosen because it lies within the region where
the corner separation is predominant. The random parameter set consisted of cb1 and κ. The calibration was
done by assuming uniform prior distributions with an interval [100%, 200%] of the nominal value. The poster-
ior was calculated according to Bayes’ Theorem and the calibrated parameters were determined to be cb1 ¼ 0:268
and κ ¼ 0:44.
The calibrated CFD model was compared to CFD with default parameters and experimental data. The cali-

brated model showed accurate prediction of the corner separation and the pitchwise wake profile. This improve-
ment was associated with enlarged turbulent viscosity, which resulted from increased turbulent production by
modified cb1. The boundary layer profiles showed increased turbulent viscosity and reduction of the boundary
layer thickness in the corner separated region. The log layer slope was also decreased due to increased κ.
This study showed successful calibration of the Spalart–Allmaras turbulence model for a corner separated flow

in a linear cascade. The calibrated CFD will be carefully introduced into the design process with the goal of

Figure 16. MP2 Mach number with respect to normalized pitch at 90% span for varying inlet flow incidence angles

of (a) �5�, (b) �3�, (c) þ3�, and (d) þ5�. Each subfigure shows experimental measurement (exp.), simulation using

default model parameters (default), simulation using calibrated model parameters (calibrated), and simulation using

reference model parameters (ref ).
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improving prediction capability. This calibration only focused on two parameters, one geometry, and one region
of the flow. Further investigation of the other model parameters and other flow features will be continued.
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