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Abstract

Big data and machine learning are developing rapidly, and their applications
in the aerodynamic design of centrifugal impellers and other turbomachin-
ery have attracted wide attention. In this paper, centrifugal impellers with
large flow coefficient (0.18–0.22) are taken as research objects. Firstly,
through one-dimensional design and optimization, main one-dimensional
geometric parameters of those centrifugal impellers are obtained.
Subsequently, hundreds of samples of centrifugal impellers are obtained by
using an in-house parameterization program and Latin hypercube sampling
method. The NUMECA software is used for CFD calculations to build a
sample library of centrifugal impellers. Then, applying the artificial neural
network (ANN) to deal with the data in the sample library, a nonlinear
model between the flow coefficients, the geometric parameters of these
centrifugal impellers and the aerodynamic performance is constructed,
which can replace CFD calculations. Lastly with the help of the multi-
objective genetic algorithm, a global optimization is carried out to fulfull a
rapid design optimization for centrifugal impellers with flow coefficients in
the range of 0.18–0.22. Three examples provided in the paper show that
the design and optimization method described above is faster and more
reliable compared with the traditional design method. This method provides
a new way for the rapid design of centrifugal impellers.

Introduction

Centrifugal compressors are widely used in industry. With the advance
of industries, centrifugal compressors with great capacity and high per-
formance are required. However this type of centrifugal compressors
with large flow coefficient is difficult to design and optimize (Zhu et al.,
2016) due to complicated internal flow in the impellers. The traditional
aerodynamic design and optimization method of impeller generally
follows one-dimensional design, two-dimensional meridian channel
design, quasi-three-dimensional blade design and full three-dimensional
CFD verification. It requires not only the repeated numerical simulations
for flow field analysis, but also iterations of the impeller geometry for
continuous modifications. Although the traditional aerodynamic design
method can achieve reasonable results, it needs manual debugging
repeatedly, and greatly relies on the design experience of the designer,
which is time-consuming. Thus, the combination between traditional
aerodynamic design method and machine learning that have emerged in
recent years has currently become a new direction of research.
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Machine learning is a general term for a class of algorithms. We can use algorithms to mine the hidden laws
in the data that cannot be processed by the human brain. As a branch of artificial intelligence, the machine learn-
ing is committed to study how to use computing to improve the performance of the system (Zhou, 2016). Its
origin can be traced back to the basic tools of machine learning such as the least squares method and Markov
chain in the 17th century. Its development has evolved through the connectionism in the 1980s, statistical learn-
ing in the 1990s, and deep learning in the 21st century. To date, the machine learning has become a new
subject that integrates the theoretical foundations of multiple disciplines such as mathematics, computers,
biology, and neurology. The interdisciplinary research related to machine learning is emerging, and some research
results have already been transformed into practical applications.
With the continuous improvement of computing power and data volume, the rapid development of surrogate

models such as artificial neural network models (Hassoun, 1996), kriging models, convolutional neural networks
and recurrent neural networks has provided us with better tools to describe the relationship of “number-
number”. In the design of centrifugal impeller, the relationship between the design parameters and aerodynamic
parameters is mostly non-linear, which is difficult to be described by specific formulas. A new design method for
centrifugal impellers is to use the surrogate model to construct a non-linear relationship and dig out the internal
relationship.
In the process of centrifugal impeller design optimization, most optimization problems are not single-objective

optimization problems, but multi-objective and multi-constrained global optimization problems. Therefore,
gradient-based optimization methods are inherently unsuitable. The heuristic optimization algorithms such as
evolutionary algorithm, particle swarm algorithm, annealing algorithm, ant colony algorithm, etc., have become
important tools for solving such problems. These methods have developed rapidly in the field of machine learn-
ing in recent years. They are more suitable for solving multi-objective optimization problems, and better
approaching the non-convex or discontinuous optimal front ends (Tang et al., 2004). A multi-objective genetic
algorithm is a global algorithm that specifically solves multi-objective global optimization problems. It searches
for the optimal solution by simulating the natural evolution process. In order to solve the problem of which the
optimized sub-objectives may be contradictory, the concept of Pareto solution set is proposed. The optimization
problems in this paper are all multi-objective global optimization, so the multi-objective genetic algorithm is
selected (Deb et al., 2002).
Ibaeaki et al. (2015) and Verstraete et al. (2010) optimized a centrifugal impeller and diffuser by combining

the surrogate model and advanced algorithms, and achieved good results. Guo et al. (2016) predicted the flow
field of a centrifugal impeller based on the convolutional neural network. At the expense of partial accuracy, the
computing speed was increased by two orders of magnitude. Duccio et al. (2002) optimized an impeller by com-
bining the response surface and genetic algorithm, which greatly improved the aerodynamic performance of the
impeller, but took too long time in the process. Kim et al. (2009) optimized the meridian flow channel of a cen-
trifugal impeller through the radial basis function to improve its efficiency and total pressure ratio. These studies
show the advantages and potential of machine learning methods for the design optimization of impellers
machinery.
In this paper, the traditional design method of centrifugal impeller is combined with machine learning to

design and analyze impellers with flow coefficients of 0.18, 0.2 and 0.22, which provides a new way for design
of centrifugal impellers.

Methodology

Research object

According to the actual needs of the project, the object of this study is a series of closed centrifugal impellers
with flow coefficients of 0.18–0.22, energy head coefficient of about 0.6, and impeller rotational Mach number
of about 0.95. The fluid type is perfect gas. Impellers with different flow coefficients have the same design speed
and impeller exit diameter, aiming to obtain impellers with the best aerodynamic performance under different
flow coefficients. Table 1 shows the design parameters and requirements of the centrifugal impeller investigated
in the paper.

Design and optimization process

This section introduces the design and optimization process. Figure 1 shows the design and optimization flow
chart, and gives the detailed introduction to the important parts.
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1. First, input the design parameters and design requirements of the impeller, mainly including P0, T0, D2, ɛ, n,
qm, Z, the fluid type, etc;

2. Based on the one-dimensional analysis program of the two-zone model and combined with the optimization
algorithm, the specific values of the main one-dimensional geometric parameters (Gi) of the centrifugal

Table 1. Design parameters and requirements of centrifugal impeller.

Parameters Value

Inlet total pressure, P0 98100 Pa

Inlet total temperature, T0 288.15 K

Impeller exit diameter, D2 0.45 m

Speed, n 13140 r/min

Number of blades, Z 15Full

Total pressure ratio, ε 1.85

Isentropic efficiency, η >90%

Figure 1. Design and optimization flow chart.
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impeller are obtained, including D1s, D2/D1h, β1s, β1h, β2, b2, etc. The upper and lower bounds of each vari-
able are determined according to the specific value in the initial sampling space;

3. Choose an appropriate design of experiment (DOE) to generate the initial sample parameters. In this study,
the Latin superposition method was used for the initial sampling;

4. The meridian channel of the impeller blade, the β angle and the thickness of the blade on the shroud and
hub are parameterized. Generate three-dimensional impellers according to the initial sampling parameters.

5. Qualified samples are calculated by CFD, the isentropic efficiency and total pressure ratio corresponding to
each sample are obtained, and the sample library is initially generated. The samples are screened according to
the sample with the best aerodynamic performance in the sample library. Re-determine the sampling range
and repeat step 2 to screen and supplement the sample library;

6. The artificial neural network model is trained using the back propagation algorithm to construct a nonlinear
model among the flow coefficient, geometric parameter control points, isentropic efficiency, and total pressure
ratio.

7. The nonlinear model is used to replace the CFD calculation, and the multi-objective genetic algorithm is
used for global optimization to achieve the rapid design of the centrifugal impeller;

8. Feedbacks are set up in the whole process to reduce the time of sample library construction and search, which
is stated as follows:
• Centrifugal blade parameterization part: check the requirements of the exit lean angle. The criterion is:

exit lean angle <±20°;
• Aerodynamic analysis part: check the isentropic efficiency, total pressure ratio and flow coefficient;
• Non-linear model training part: check the value of the model correlation coefficient R. The closer R is to

1, the closer the sample value is to the 45 degree regression line. It shows that the higher the fitting accur-
acy, the better the regression effect. The criterion is R > 0.90.

One-dimensional analysis optimization

One-dimensional analysis simplifies the actual flow by considering the change of parameters in the direction of
the main flow only. Although, due to the simplification, the accuracy of one-dimensional analysis is limited, it
still occupies an important position in the preliminary design of the centrifugal impeller on account of its fast
convergence rate of calculation and short time-consumption, and also the initial plan it can provide for a design.
The two-zone model divides the gas flow in the impeller into the main flow zone and secondary flow zone.

The flow in the main flow zone is regarded as isentropic flow, and the flow in the secondary flow zone is
regarded as non-isentropic flow (Japikse, 1985). Based on the two-zone model, researchers have proposed a large
number of loss models to analyze and predict the aerodynamic performance of centrifugal impellers, and have
achieved relatively good results.
This research has developed a one-dimensional analysis program, mainly based on the two-zone model. The

program can output the characteristic curves of mass flow-isentropic efficiency and mass flow-total pressure ratio
by inputting the design parameters and main geometric parameters of a centrifugal impeller. One-dimensional
analysis program has the advantage that the time cost of a single run is only on the order of seconds. Combined
with the multi-objective genetic algorithm, the main geometric parameters are optimized globally. The optimiza-
tion objective is the maximum isentropic efficiency and the minimum difference between the total pressure ratio
and the target pressure ratio under the design condition. The mathematical model is shown in Equation 1.
Through the one-dimensional design optimization of impellers with flow coefficients of 0.18, 0.2 and 0.22
respectively, the upper and lower bounds of the best main one-dimensional parameters impellers with the speci-
fied flow coefficients are determined, and a three-dimensional sampling space is determined.

max :ηdes
min :jεdes � εobjj

�

st :minGi � Gi � maxGi

(1)

Parametric method of centrifugal impeller

A reasonable parameterization method of a centrifugal impeller should not be too complicated. While ensuring
accuracy, it is better to use fewer parameter control points to reasonably describe the shape of blade. In order to
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achieve better coupling with the one-dimensional analysis program, an in-house parameterization program for
centrifugal impellers has been developed in this study.
In the meridian coordinate system (R, Z), the meridian flow channel is given, and in the dimensionless merid-

ian direction (m0, β), the β angle distribution is given. The β angle is converted into camber line through integra-
tion, and the thickness is superimposed on its normal direction to generate a two-dimensional blade shape.
Finally, three-dimensional blades are generated by stacking the leading edges (Wang et al., 2019).
The flow condition of the main flow is determined by the meridian channel. As shown in Figure 2a, the

meridian flow channel is composed of two meridian curves, both of which are constructed using 4th-order
Bezier curves. The inlet and outlet geometry of the meridian curves is determined by the control points S1, H1,
S5 and H5, and the remaining control points are used to adjust the shape of the meridian curves. Figure 2b
shows the distribution of β angle at the hub, the β angle distribution of hub is constructed using 5th-order
Bezier curves. The inlet and outlet β angle are respectively determined by the B1 and B6 control points, and the
remaining control points are used to adjust the β angle distribution. Figure 2c shows the distribution of thickness
at the hub, the thickness distribution of hub is constructed using 4th-order Bezier curves. T2 and T4 are used to
control the shape of the leading and trailing edge, and their abscissas are the same as the control points of T1

and T5, respectively at the beginning and the end of the dimensionless meridian direction. T3 is used to adjust
the position and size of the maximum thickness. The parameterization method of β angle and thickness distribu-
tion of the shroud is the same as the hub. Se (e = 1,…,5), Hf (f = 1,…,5), Bc (c = 1,…,12) and Th (h = 1,…,10)
respectively represent the control points and the corresponding coordinate values.

Sample library and training of nonlinear models

Design of experiment (DOE) plays an important role in the generation of the sample library, and a reasonable
DOE method can make the sample distribution in the sample library more reasonable. Latin Hypercube is a
stratified sampling DOE method. Compared with random sampling and full factorial design, it has a more effect-
ive space filling capacity on the basis of reducing sample requirements. For geometric parameters b2, D1s and the
blade angle control points on the shroud and hub, Latin hypercube sampling was performed. The remaining
parameters were selected based on the result of one-dimensional design optimization. Part of the control points
of the β angle distribution and the meridian flow channel cannot be obtained through one-dimensional design
and optimization. Therefore, in the initial sampling, a larger range is given, and the second sampling reduces the
sampling range of the control points according to the optimal sample. After the sampling, three-dimensional
samples are generated using the centrifugal impeller parameterization program.
CFD calculation was performed on the three-dimensional samples of the centrifugal impeller. The grid was

generated using the AutoBlade module of the NUMECA software. In order to trade off between calculation
accuracy and computing cost, the grid number was set to 550,000. Figure 3 is shows the grid on the blade
surface and the hub. The Fine module of the NUMECA software was used for numerical simulation, and the
Spalart-Allmaras (SA) turbulence model was used.The chain of grid generation and flow calculation was auto-
mated using an in-house python script, thus to reduce manpower and time costs.
According to the optimal sample in the initial calculation results, the sample space was reduced. Firstly, the

samples were sorted based on the aerodynamic performance, and the non-convergent samples and the samples
with poor aerodynamic performance were removed. Secondly, new ranges for the sample space were determined
based on the optimal samples. Finally, new samples were filled. For the initial sampling, the number of samples
in the sample library was 1,000. After removing samples and filling samples again, the total number of samples
in the sample library became 463. Table 2 shows the second sampling range.

Figure 2. Parameterization model of meridional channel (a), β at the hub (b), and thickness at the hub (c).
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The data was normalized, and the min-max standardization method was used to linearly transform the original
data, so that the result could be mapped to 0–1, as shown in Equation 2.

Xnew ¼ (X � Xmin)
(Xmax � Xmin)

(2)

The ratio of the sample training set and the prediction set in the sample library is 0.15:0.85. After repeating
tests, this research selected a 4-layer artificial neural network. BP algorithm was used to train artificial neural
network. Figures 4 and 5 respectively show the model training curve and the test set 45-degree regression line
(Lei, 2020). It can be seen that when the training epoch is about 70, the convergence is stable, and the mean
square error of the training curve and the test curve are both less than 10−2, which meets the convergence
requirements. Most of the test samples are distributed around the diagonal of the 45-degree regression line, and
only a few points are far away from the regression line. In addition, the regression coefficient R = 0.95, which is
close to 1, indicating that the model has high fitting accuracy and strong generalization ability. Although there
are still small deviations between the predicted aerodynamic performance of the model and the actual aero-
dynamic performance, it is difficult to find the actual optimal solution for complex problems with a large
number of design variables, and a lot of computing costs are required. Considering the reduction of computing
cost and design optimization cycle, these deviations can be considered acceptable (Zhang et al., 2018).

Results and discussion

The trained nonlinear model was combined with the multi-objective genetic algorithm for global optimization,
and the impellers with flow coefficients of 0.18, 0.2 and 0.22 were designed respectively. The problem is

Figure 3. Surface grid of the impeller.

Table 2. The second sampling range.

Design
Variable

Lower
Bound

Upper
Bound

Design
Variable

Lower
Bound

Upper
Bound

Design
Variable

Lower
Bound

Upper
Bound

S1 0.039 0.043 B4 5 8 B9 50 58

S5 0.016 0.019 B5 12 21 B10 54 91

B1 45 57 B6 28 39 B11 27 45

B2 48 80 B7 42 51 B12 20 27

B3 10 17 B8 25 42 φ 0.18 0.22
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mathematically formulated Equation 3. The basic parameters of the multi-objective genetic algorithm were set as
follows: crossover probability 0.85, mutation probability 0.09, population size 150, and evolution generation 300
generations. After the convergence of algorithm, the best point was verified by CFD. The following is the ana-
lysis of results.

min :1� ηdes
min :jεdes � εobjj

�

st :
minGi � Gi � maxGi

φ ¼ φobj

( (3)

Figure 4. Model training curve.

Figure 5. Test set 45 degree regression line.
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The impellers designed by machine learning CFD (new impellers) results were compared with the CFD
results of original impellers. The original impellers were designed by a traditional method, and it had gone
through a much longer design and optimization cycle than the new impellers. Figure 6 compares the variable
condition performance curve of the new impellers and the original impellers with flow coefficients of 0.18, 0.2
and 0.22. It can be seen that at the design conditions, under the premise that the total pressure ratio meets the
design requirements, the isentropic efficiency of the new impellers exceeds the original impellers and also the
design requirements. After the main parameters of the impeller are obtained after rapid design, the optimization
can be carried out for non-design conditions.
Figures 7–9 shows the relative Mach number contours and streamline at 10%, 50%, and 90% span of the

impeller. It can be seen that the airflow is clean, and there is no obvious flow separation and shock wave
phenomenon.
In order to study the uniformity of the airflow at the exit of the new impellers, Figures 10–12 respectively

shows the absolute Mach number distribution, tangential velocity distribution and flow angle distribution of

Figure 6. Comparison of performance curves for different impellers. (a) φ= 0.18. (b) φ= 0.2. (c) φ= 0.22.

Figure 7. Relative Mach number contours and streamlines of the impelller with a flow coefficient of 0.18. (a) 10%

span. (b) 50% span. (c) 90% span.

Figure 8. Relative Mach number contours and streamlines of the impeller with a flow coefficient of 0.2. (a) 10%

span. (b) 50% span. (c) 90% span.
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Figure 10. Distribution of absolute Mach number.

Figure 11. Distribution of tangential velocity.

Figure 9. Relative Mach number contours and streamlines of the impeller with a flow coefficient of 0.22 (a) 10%

span (b) 50% span (c) 90% span.
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three new impellers in the normalized blade exit section (from shroud to hub). It can be seen that the airflow at
the exit of the blade is subsonic. The tangential velocity and flow angle fluctuates slightly on the shroud, and the
overall distribution is uniform.
The traditional design method requires repeated CFD calculations on the impeller, and a single calculation

requires several hours. A single performance prediction of the impeller using machine learning method costs less
than 1 second, which greatly shortens the design optimization cycle. The above examples show that the aero-
dynamic performance of the new impellers designed based on the machine learning method can meet the design
requirements and can reach or exceed the original impellers.

Conclusions

In this paper, through the one-dimensional design and optimization, the main geometric parameters of a centri-
fugal impeller were obtained in a relatively short time to provide a sampling space for the subsequent design.
Using the three-dimensional samplings and numerical simulations, a data libarary for centrifugal impellers with
large flow coefficient was built. Refering to the data in the libarary and based on the artificial neural networks, a
nonlinear model between fgeometric parameters and aerodynamic parameters of an impeller was constructed.
Combined with the heuristic optimization algorithm, the rapid design of the centrifugal impellers with flow coef-
ficients of 0.18, 0.2 and 0.22 was carried out respectively. Following conclusions can be drawn:
The centrifugal impeller parameterization method can represent the geometric characteristics of a centrifugal

impeller, realize the coupling with one-dimensional design and optimization, and generate three-dimensional
samples.
The results of centrifugal impellers with flow coefficients of 0.18, 0.2 and 0.22 show that the non-linear

model constructed can be combined with the multi-objective genetic algorithm to carry out the rapid design of
centrifugal impellers with flow coefficients (from 0.18 to 0.22). A single performance prediction for the model
takes seconds only, which greatly shortens the design optimization cycle.
The quality and sampling range of samples in the sample library determine the coefficient range of rapid

design model. In theory, the design range can be broadened to other impellers with other flow coefficients by
supplementing the samples, which is also verified by this research. The method explored in the paper shows a
certain industrial practicability and development potential.

Nomenclature

qm mass flow
D1s inlet shroud diameter
D1h inlet hub diameter
β1s inlet hub blade turning angle

Figure 12. Distribution of flow angle.
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β1h inlet shroud blade turning angle
β2 outlet blade turning angle
b2 outlet blade height
ηdes isentropic efficiency under the design condition
ηor-des isentropic efficiency of the original impeller under the design condition
εdes total pressure ratio under the design condition
εobj target total pressure ratio
Gi main geometric parameter values
φobj target flow coefficient
R regression coefficients
Vt tangential velocity
Vm meridian velocity
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