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Abstract

Current surrogate model methods that are widely used in optimization and
design processes rely on manual parameterization to describe the geometry
of objects. The loss of geometric information in this process limits the pre-
diction accuracy of surrogate model. To tackle this problem, the new
method directly picks important geometric features from surface meshes of
fluid domain using Graph Neural Networks (GNNs) and predicts contours of
fluid variables based on extracted information with Convolutional Neural
Networks (CNNs). The prediction error of CNNs propagates backwards to
train GNNs to select sensitive features from surface meshes. This framework
reduces uncertainties introduced by manual parameterization and the loss
of geometric information because the input of this new method is from the
meshes used in the numerical simulations. With CNN and larger amount of
extracted geometric information, this method can also predict higher
dimensions distributions of flow variables rather than only several perform-
ance metrics. The nature of non-parametric representation of geometry
also allows users to access designs defined by other parameterization
methods to create a larger database. Additionally, thanks to the generic
nature of the new method, it can be used for any other design or optimiza-
tion processes governed by partial differential equations involving compli-
cated geometries. To demonstrate this new method, a non-parametric
surrogate model is built for a low-pressure steam turbine exhaust system
(LPES). The new surrogate model uses 10 surfaces meshes of the LPES as
input and it is used to predicts the energy flux contours at the exit of the
last stage of the turbine. Altogether 582 designs have been generated,
which contains two types of geometries defined by different methods.
Among them, 550 cases are used for training, and 32 cases for testing. The
power output of the last two stages of the turbine predicted by the surro-
gate model has average 0.86% difference compared with those of numer-
ical simulations over a wide range of power ratings. The structural similarity
index measure (SSIM) is used to measure the differences between the simu-
lated and predicted contours at the exit of the last rotor, where the average
SSIM of 640 contours is 0.9594 (1.0 being identical).

Introduction

Surrogate model is widely used to accelerate the process of design and
optimization of turbomachinery (Kipouros et al., 2007; Samad and
Kim, 2008; Samad et al., 2008; Lee and Kim, 2009; Lee et al., 2014;
Schnoes et al., 2018; Persico et al., 2019). It can predict the perform-
ance of new designs by utilizing previous results from numerical
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simulations or experiments rather than performing similar simulations or experiments repetitively. In the recent
decades, a lot of surrogate model methods have been developed and applied in the industrial applications, for
example, (1) Polynomial Response Surface Method (Myers et al., 2016; Hecker et al., 2017; Shuiguang et al.,
2020); (2) Kriging Model (Sakata et al., 2003; Jung et al., 2021); (3) Radial Basis Function and Extended
Radial Basis Function (Gutmann, 2001); (4)Artificial Neural Network (Mengistu and Ghaly, 2008); (5)Support
Vector Machine (Lal and Datta, 2018). Figure 1 shows the process of existing surrogate model method, and one
key step in this process is manual parameterization, which is to choose some important geometric parameters
according to the experience of researchers to describe the geometry. In this step, if too few parameters were used,
some geometric information will be lost because it is insufficient to describe geometries with high-order surfaces
(e.g., airfoils and blades). On the other hand, using too many parameters or choosing irrelevant parameters will
cause problems of over-fitting (Claeskens and Hjort, 2008). It is recognized that manual parameterization is the
bottleneck that prevents further improvement of the performance of surrogate model method in terms of both
accuracy and flexibility.
In this paper, a novel surrogate model method is presented, which establishes a mapping relationship between

the surface meshes of fluid domain and two-dimensional distributions of fluid variables (in the form of contour
maps) with Graph Neural Networks (GNNs), Convolution Neural Networks (CNNs) and a Conditional
Variational Autoencoder (CVAE). Figure 2 shows the differences among numerical simulation used as analysis
tools, the existing surrogate model method and the proposed novel surrogate model method. The new method
can process the bounding surfaces of the fluid domain from the surface meshes used in the numerical simulations
and extract relevant geometric features according to their significance to the result. Compared with the existing
surrogate models, new method contains less uncertainties introduced by manual parameterization. This new
method also allows different types of designs from different sources to be used because the geometry input to the
model is the surface mesh, not user-defined parameters. In addition, the new method has the ability of predicting
two-dimensional distributions of variables (in forms of contour maps) by utilizing CNNs to process the images.
The ability of predicting two-dimensional distributions of variables is achieved by the application of CNNs.

With the combination of convolutional layers, it can extract information from images, and recognize the convo-
lutional result with multi-layer perceptron (Valueva et al., 2020). In this study, CNNs are used to predict the
contours based on the latent distribution.
The ability of processing surface mesh is achieved by the application of GNNs. The nature of the graphic

operation of GNNs make it capable to process the non-Euclidean domain by defining the connectivity of mesh
points, while CNNs are only able to process regular Euclidean data like figures. Among existing GNNs variants
(Scarselli et al., 2009), GNNs are categorized into three types: Recurrent GNNs, Spatial GNNs and Spectral
GNNs. In this study, the surrogate model is built based on Spectral GNNs for its strengths in extracting features
from meshes with large number of vertices (Wu et al., 2020). Spectral GNNs are built on signal processing
theory. The key step, convolutional operation, is done by Chebyshev polynomial approximation (Hammond
et al., 2011). In this study, GNNs are used to extract geometric information by optimizing parameters in the
neural networks via back propagation of loss. This is to pick relevant information based on the feedback of pre-
diction error, which avoids loss of geometric information and over-fitting problem. Also, the input of the new
surrogate model can be both unstructured mesh and structural mesh thanks to the ability of GNNs to process
non-Euclidean data.

Figure 1. Process of existing surrogate model method.
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Methodology

In this section, this non-parametric surrogate model method is introduced “top-down” by its architectural
designs, namely, framework, blocks and then layers. Finally, the loss function used to train this surrogate model
is demonstrated.

Framework of non-parametric surrogate model

The framework of this new surrogate model method is shown in Figure 3. The mesh encoder block is a GNN
encoder, which is to pick important geometric features from surface meshes. And the decoder block is a CNN
decoder, which is to reconstruct the contours. Between the mesh encoder and contour decoder, there is a bottleneck
that maps the extracted geometric information to latent flow variable distribution. The mapping relationship built
through bottleneck needs much less training samples than directly mapping mesh vertices to contours because its
input and output dimensions are much smaller. Also, it is easier to build a latent distribution for variational interface
based on latent representation of geometric information in the bottleneck. The conditions in the model is blade
passage index, which is to label different blade passages since the flow condition is asymmetric in the demonstration.
In other applications, it can also be inlet boundary condition, material property and other important factors.
The structure of this surrogate model is basically a CVAE, which is an extension of AutoEncoder (AE). It is to

compress graphical data to a latent vector and then reconstruct the graph with the latent vector. The neural
network is trained to reconstruct the graphs with less error. Variational AutoEncoder (VAE) uses variational infer-
ence to estimate the latent vector rather than directly encoding from input graph (Blei et al., 2017). The latent
vector z can be estimated by observation vector x using the following equation:

p(zjx) ¼ p(xjz)p(z)
p(x)

(1)

Figure 2. Comparison among numerical simulation, existing surrogate model method and novel surrogate method.

Figure 3. Framework of non-parametric surrogate model.
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However, p(zjx) is usually very difficult to compute directly (Kingma and Welling, 2019). Therefore, another
distribution is used to approximated p(zjx) in the training process. The Kullback-Leibler divergence is used to
measure the difference between two probability distributions, which is to be minimized during the training
process. Compared with VAE, CVAE adds conditions into the latent distribution so that different classes of
input data are categorized into different groups.

Blocks in non-parametric surrogate model

The surrogate model presented in this paper contains two types of blocks: mesh encoder blocks and contour
decoder blocks. The mesh encoder and contour decoder each consists of several blocks, the number of which
depends on the size of mesh vertices and contour pixels. More mesh encoder blocks means a smaller latent
vector, which contains less geometric information. But larger latent vector needs more training cases to prevent
over-fitting.

Mesh encoder blocks

The structure of mesh encoder block is illustrated in Figure 4. One block has a Chebyshev convolution layer, a
normalization layer (batch normalization), an activation layer (the rectified linear unit function), a down-
sampling layer and a pooling layer (max pooling layer). The Chebyshev convolution layer is to scan the mesh ver-
tices with Chebyshev polynomial filter and change the dimension of mesh vertices vectors. The normalization
layer is to normalize the value of vectors in the same batch. And the activation layer is to zero the negative value
in the vector. The down-sampling layer is to drop out irrelevant vertices based on the transformation matrix.
The pooling layer is to keep the largest value and discard other values in the filter, which reduces the dimension
of the vector. After several blocks, relevant geometric information is picked to form the latent vector. During a
training process, the optimizer will optimize the parameters of each layer according to the loss function. In this
way, the mesh encoder can keep important geometric information and discard insensitive information.

Contour decoder blocks

Contour decoder block is shown in Figure 5, which has four layers: a Chebyshev convolution layer, a normaliza-
tion layer (batch normalization), an activation layer (the rectified linear unit function) and a upsampling layer.
Convolution layer is to change the dimension of vector with convolutional filter. And then the vectors in the
same batch are normalized by normalization layer. Activation layer is to zero the negative value in the vector.
Upsample layer is to increase the number of elements in the vector. After several blocks, a latent distribution of
large size is expanded to a contour of smaller size.

Figure 4. Mesh encoder block.
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Two important layers in non-parametric surrogate model

Chebyshev convolution layer

In this paper, as shown in Figure 6, the surface mesh M of the design is defined by the coordinates of vertices V
and edges E . V is the n vertices in the Euclidean space, which is an n� 3 vector. The edges, E, are represented
by the sparse adjacency matrix A with a size of n� n, where Aij ¼ 1 denotes a connection between vertex i and
vertex j. Otherwise,Aij ¼ 0. More information about representation of GNNs can be found in
(Sanchez-Lengeling et al., 2021).
The most important layers used in the mesh encoder is the fast spectral convolution layer, demonstrated in

(Defferrard et al., 2016). The mesh convolution operator � is defined as a Hadamard product in Fourier space:

x � y ¼ U((UTx)� (UTy)) (2)

Figure 5. Contour decoder block.

Figure 6. Demonstration of GNNs matrix.
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To reduce the computational cost, convolution is conducted by a kernel gθ with Chebyshev polynomial of
order K.

gθ(L) ¼
XK�1

k¼0

θkTk(~L) (3)

where ~L ¼ 2L=λmax � In is graph Laplacian matrix. It is defined as L ¼ D � A, where diagonal matrix
Dii ¼

P
j Aij. The λmax is the variable to normalize matrix L. And θk are the coefficients of the Chebyshev poly-

nomials. Tk can be expressed as:

Tk(x) ¼ 2xTk�1(x)� Tk�2(x) (4)

with the initial condition T0 ¼ 1 and T1 ¼ x. This represents a Chebyshev polynomial of order K.
With the mesh filter shown above, the fast spectral convolution layer can be expressed as the following equa-

tion with n� Fin input and n� Fout output

yj ¼
XFin
i¼1

gθij (L)xi (5)

where yj means the jth feature of output matrix, xi is the ith column of input feature matrix.

Mesh sampling layer

Another important layer used in the mesh encoder is the mesh sampling layer, which includes the down-
sampling layer and up-sampling layer in autoencoder (Ranjan et al., 2018). In the encoder, important informa-
tion is chosen by down-sampling layer and irrelevant information will be discarded.
The convolution layers used in this study represents mesh in multi-scales so that mesh sampling layer can

capture the local and global geometric information. The down-sampling operation is conducted by a transform
matrix Qdown [ {0, 1}n�m, where m is the number of vertices in the original mesh and n is the number of verti-
ces in the down-sampled mesh. Qdown( p, q) ¼ 1 means the q-th vertex is kept during the down-sampling, while
Qdown( p, q) ¼ 0 means the vertex is discarded. The transformation matrix is optimized to minimize the surface
error by quadric matrices (Garland and Heckbert, 1997).

Loss function

The loss function of the neural network consists of three types of losses: mean squared error (MSE) loss,
Kullback-Leibler divergence (KLD) loss and structural similarity loss.
MSE measures the average of pixel-wise error between the contours predicted by model (Yi) and contours pre-

dicted by numerical simulation (Ŷi). It is defined mathematically by:

MSE ¼ 1
n

Xn
i¼1

(Yi � Ŷ i)
2 (6)

KLD (Kullback and Leibler, 1951) measures the difference between one probability distribution and the refer-
ence probability distribution. In variational autoencoder, KL loss is the sum of all the KLD between the compo-
nents in latent distribution and the standard normal distribution. With minimizing the KL loss, the latent
distribution is closer to the standard normal, which can improve the interpolation and extrapolation ability of the
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surrogate model. KLD can be defined by:

KLD(p, q) ¼ �
ð
p(x)logq(x)dx þ

ð
p(x)logp(x)dx

¼ 1
2
log(2πσ22)þ

σ21 þ (μ1 � μ2)
2

2σ22
� 1
2
(1þ log2πσ21)

¼ log
σ2
σ1

þ σ21 þ (μ1 � μ2)
2

2σ22
� 1
2

(7)

As it is to measure the KLD between the components in latent distribution and the standard normal
(σ2 ¼ 1, μ2 ¼ 0), it can be simplified as the following equation for convenience:

KLloss ¼
Xn
i¼1

(σ2i þ μ2i � log(σi)� 1) (8)

where μ is the mean vector, σ is the variance vector.
Structural similarity loss measure, or SSIM (Wang et al., 2003), is a method to measure the similarity

between two figures. Here, it is used to optimize the neural network to make predicted contours and simulated
contours more structurally similar. It is defined by:

SSIM(Yi, Ŷ i) ¼
(2μYiμŶ i

þ c1)(2σYiŶ i
þ c2)

(μ2Yi þ μ2
Ŷ i
þ c1)(σ2Yi þ σ2

Ŷ i
þ c2)

(9)

where μYi , μŶ i
are the mean of Yi and Ŷi, σ2Yi , σ

2
Ŷ i

are the variances of Yi and Ŷi, σYiŶ i
is the covariance of Yi

and Ŷi, c1, c2 are two variables to stabilize the division with weak denominator.
Finally, the loss function of the surrogate model is defined by the following equation:

loss ¼ k1MSEþ k2KLDþ k3(1� SSIM) (10)

where three coefficients k1, k2 and k3 are user-defined hyperparameters.

Demonstration of non-parametric surrogate model and application

In this section, the process of building a non-parametric surrogate model for LPES is introduced in details.

Introduction of low-pressure steam turbine exhaust system

LPES is designed to maximize the recovery of the kinetic energy leaving the low-pressure steam turbine and
convert it to static pressure rise for the condenser. It usually consists of three parts: an axial-to-radial diffuser, an
asymmetric collector, and an extension.
It is quite challenging to build surrogate model for LPES with the existing surrogate model methods because

parameterization of geometry is problematic. Figure 7 shows a parameterization method to define the geometry
of the system from (Ding, 2019), namely, the diffuser length ratio (L1=L0), diffuser area ratio (A1=A0), flow
guide height ratio (H1=L0), diffuser turning angle (Δθ), tip kink angle (Θtip), hub kink angle (Θhub), hood
height ratio (H1=L0) and hood width ratio (W1=L0). With these geometric parameters, there are still many geo-
metric features missing, for example, the curvature distribution of the diffuser, the height change of the collector,
the width change of the extension and many more details. If using more parameters to describe the geometry, it
needs more training cases. And the irrelevant parameters falsely selected by users will cause the over-fitting
problem and reduce the accuracy of prediction.
In this surrogate model, there are two sets of LPES geometries defined by different parameterization methods.

One is defined by 95 parameters, the other one by 66 parameters. The first one firstly defines the cross-section
of diffuser and collector, and then revolves it with an ellipse equation to generate circumferential distribution. It
also has asymmetric features in extension. The second one directly defines the cross-section along the axial direc-
tion with ellipse equations. Two genetic-based optimiztion systems with these two sets of parameters are used to

J. Glob. Power Propuls. Soc. | 2022 | 6: 165–180 | https://doi.org/10.33737/jgpps/151661 171

Cao et al. | Non-parametric surrogate model method on exhaust system https://www.journalssystem.com/jgpps/,151661,0,2.html

https://doi.org/10.33737/jgpps/151661
https://www.journalssystem.com/jgpps/,151661,0,2.html


accumulating dataset for surrogate model. With two types of geometries, the ability of processing geometries
from different sources can be tested.

Mesh generation

The mesh generation process is shown in Figure 8. It starts from the coordinates of control points given by
genetic algorithm. The control points are used to generate Non-Uniform Rational B-Spline (NURBS) surfaces,
and then evaluate the NURBS surfaces to generate the surface mesh. These surface meshes, shown in Figure 9
are the input of surrogate model. Volume meshes are generated with the elliptic mesh generation method similar
to (Spekreijse, 1995), which is by solving Laplace equation:

@2x
@i2

þ @2x
@j2

þ @2x
@k2

¼ 0

@2y
@i2

þ @2y
@j2

þ @2y
@k2

¼ 0

@2z
@i2

þ @2z
@j2

þ @2z
@k2

¼ 0

(11)

The boundary condition is defined by the coordinates of surface mesh. Since the Laplace equation represents
a potential field, equipotential lines do not intersect and are orthogonal at vertices. The volume mesh can be
generated by solving x, y, and z coordinates potential field respectively. And the refinement of mesh can be done
by refining the surface mesh, and then the volume mesh is also refined because surface mesh is the boundary
condition of Laplace equation. The surface mesh can be refined by re-evaluating the NURBS surface with

Figure 7. A typical down-flow type low-pressure exhaust system for large steam turbine. Figure adapted from (Ding,

2019).
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different distribution functions. This mesh generation method is also able to generate meshes for the fluid
domain with the same topology, regardless changes in geometry.

Numerical simulation setup

Simulation domain

The fluid domain of numerical simulations includes: the last two stages of low-pressure steam turbine, an
axis-asymmetric axial-to-radial diffuser, a collector and an extension. Figure 10 shows the geometry of two
turbine stages, which represents the last two stages of a typical large steam turbine. It can generate a representa-
tive inlet boundary condition for the exhaust system. Figure 11 shows the geometry of the axial-to-radial diffuser,
collector and extension in the downstream. The stage-hood interface treatment method is multiple mixing plane
method with four blade passages. Each of them generates inlet boundary condition for a 90-degree diffuser
section (Ding, 2019).

Figure 8. Framework of mesh generation process.

Figure 9. Ten surface meshes for surrogate model.
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Simulation setup

The solver used for the numerical simulations is Ansys CFX, which is a widely-used commercial CFD solver for
the research community and industry. The simulation is a Reynolds-averaged Navier–Stokes (RANS) simulation,
which uses k � ε turbulence model (Burton et al., 2013).
The inlet boundary condition is applied at the inlet of the simulation domain, which has total pressure and

total enthalpy. The flow direction at the inlet is normal to boundary. And the outlet of the simulation domain is
at the end of extension, which is applied with static pressure boundary conditions. The flow direction at the
outlet is also normal to boundary. To perform the part-load simulations, the total pressure is reduced at the inlet
to reduce the mass flow rate and work output. The static pressure at the outlet is 6.2 kPa according to the steam
property at the condenser. For the property of the working fluid, steam, IAWPS data has been used, which is
embedded in CFX and also widely used in the research community and industry.
Another setup worth mentioning is the interface treatment method between stages and the inlet of the dif-

fuser. Because the downstream of the diffuser are asymmetric, it is necessary to model the circumferential non-
uniformity. The multiple mixing plane method (Burton et al., 2013) is used in this study. Figure 12 shows only
four-blade passages are simulated to generate inlet flow conditions for the low-pressure exhaust hood, which
means the outlet boundary condition of one blade passage are copied to cover a 90-degree section of the diffuser.

Figure 10. The last two low-pressure stage and contours to be predicted.

Figure 11. The geometry of exhaust hood. The white arrows represent inlet boundary and the yellow arrows repre-

sent outlet boundary.

J. Glob. Power Propuls. Soc. | 2022 | 6: 165–180 | https://doi.org/10.33737/jgpps/151661 174

Cao et al. | Non-parametric surrogate model method on exhaust system https://www.journalssystem.com/jgpps/,151661,0,2.html

https://doi.org/10.33737/jgpps/151661
https://www.journalssystem.com/jgpps/,151661,0,2.html


Multiple mixing plane method, though losing accuracy with only 4 blade passages, can reduce the computational
cost considerably.

Processing of numerical simulation results

The objective of GA-based optimization is to increase power output of the last two low pressure steam turbine
stages. It is calculated by the difference between the total energy fluxes pass through inlet and outlet of the last
two stages, which is summed value of all the elements of contour map of energy flux. Assuming the system is
adiabatic, the power of each element is obtained by the product of local total enthalpy and local mass flow rate:

Δ _W ¼ _mh02 � _mh01

¼
Xn
i¼1

_mi2hi2 �
Xn
i¼1

_mi1hi1
(12)

Since the inlet boundary condition is known in the simulation, only the total enthalpy contours and mass
flow rate contours at the outlet of the last two stages are extracted from numerical simulations to generate power
contours as shown in Equation 12, which will also be the output of the surrogate model. Because of the multiple
mixing plane method, there are four blade passages for each simulation, and five workload conditions for each
design. Admittedly, there is certainly some uncertainties in the numerical simulations, but it is not primary
concern in this paper since the key of this study is to develop a new surrogate model method.

Neural network setup

The neural network is built under the framework of Pytorch. Figure 3 shows the main structure of network.
Figure 13 shows the change of feature dimension through the network. The input is 10 bounding surface
meshes of fluid domain, which have 195,200 vertices in total. All the samples need to be interpolated to the
same number of mesh vertices to represent the geometry at the same details level. Therefore, the input data is
the coordinates of vertices (195,200� 3) and adjacency matrix (195,200� 195,200). The mesh encoder has 6
mesh encoder blocks. A smaller filter size (16) in the front four blocks can capture local geometric features, and
a larger filter size (32) in the rear two blocks can capture global geometric features better. After the mesh

Figure 12. Demonstration of multiple mixing plane method. Four blade passages are modelled. Each of them gener-

ates inlet boundary condition for a 90-degree section of exhaust hood.
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encoder, the mesh is compressed into a 128� 1 latent vector. Conditions (blade passage index) are added to the
latent vector. Then, two fully connected layers are used to estimate the mean vector and variance vector of latent
distribution. Conditions (blade passage index) are added into the latent distribution again. The latent distribution
is reshaped to be the input of the contour decoder. In the contour decoder, the first two blocks are ResNet
blocks, and the rear two blocks are basic blocks.

Test result

In this demonstration, 550 cases are used for training, and the test dataset has 32 cases. Each case contains total
enthalpy flux distribution contours for 4 blade passages at 5 workload conditions (640 contours in total).
Figure 14 is to demonstrate the ability of predicting contours and capturing flow features. It shows some repre-

sentative contours of the test cases, which presents some typical flow features of 5 workload conditions. Most
flow features are predicted well in Figure 14, which provides more information than existing surrogate model
methods. For example, the separations in the near hub regions are well captured in the contours of 50% work-
load condition. And the vortices are also well predicted in the contours of 70% workload condition. These infor-
mation can tell users the reason of performance improvement during the optimization process rather than only
several performance metrics.
Table 1 summarizes the results of all 640 test contours. The averaged summed value error of dataset is 0.86%,

which is able to screen suitable designs and accelerate the optimization process. The last few optimization itera-
tions may still rely on numerical simulation. Also, test dataset is consist of two sub-datasets that contain geom-
etries defined by two parameterization methods, both of which have 16 cases and 320 contours. In Table 1, The
similarity measure of sub-dataset1 and sub-dataset2 are 0.9580 and 0.9609 respectively, which has no significant
difference. This proves the generalization capability of the proposed method in processing geometries defined by
different parameterization methods.
Figure 15 plots the predicted performance against results from numerical simulations. Most of points are close

to y ¼ x, which means low prediction error. There is a group of points significantly beyond the y ¼ x line, and
the error increases with the growth of the summed value. They are all from 2 designs, which are so geometrical
different from designs in the training dataset that surrogate model is unable to predict the performance well. In
this case, users can identify these designs by KLD and perform numerical simulations to evaluate the perform-
ance rather than using surrogate model.

Discussion

The new surrogate model method established a mapping relationship between the surface mesh of fluid domain
and two-dimensional distribution of flow variables. Using GNNs to extract geometric information, the applica-
tion of this new method can be extended beyond the area of aerodynamics optimization. Thanks to its ability of
processing both structured and unstructured mesh, it is also applicable in various problems in different fields,
which are solutions of partial differential equations, traditionally using finite element analysis and electromagnetic
analysis methods.

Figure 13. The change of feature dimension in the network.
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This method can also be used as an inverse design method. It can be achieved by exchanging the input
and output of the mapping relationship built in this paper. To be more specific, users can import the desired
two-dimensional distributions of physical properties into the contour encoder, and the designs could be created
by the mesh decoder.
In the application scenarios, one common problem of surrogate model method is users do not know whether

they can trust the result of surrogate model or not. If the new design is quite different from designs in the train-
ing dataset, it is better to perform numerical simulations. To tackle this problem, the new method can identify
the new design by calculating the KLD of their latent vectors. Higher KLD usually means the new design needs
numerical simulation to evaluate its performance.

Figure 14. Contour results of numerical simulation and machine learning of some typical flow features at five work-

load conditions. (50%, 60%, 70%, 85% and 100%). Unit: 1� 104 kJ=s.
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Conclusion

This study demonstrated a novel non-parametric surrogate model method with application on LPES design and
optimization. The new method directly takes surface mesh as the input, which reduces the uncertainties intro-
duced by manual parameterization and loss of geometric information. This feature gives the method greater
advantages in building surrogate model for designs with complex geometries. In the test, the average summed
value error of 640 contours is 0.86%.
This method also shows high flexibility and compatibility. Because the input of this method is surface mesh

of simulation domain, it can take geometries of the same topology as its database. This means it can process
geometries defined by different parameterization methods. This feature is very useful for further increasing the
size of database of surrogate model using variable sources of data.
Compared with existing surrogate model methods, this new method can also predict two-dimensional distribu-

tion of variables (contour maps) based on surface mesh. Contours can help designers to identify physical mech-
anism, improve designs and for many other purposes. In the test, the average similarity score of 640 contours is
0.9594, which indicates that most of the pertinent flow features have been captured.

Table 1. Summary of result. Sub-dataset1 are geometries defined by 95 parameters and sub-dataset2 are
defined by 66 parameters.

Work Condition Performance Metrics Dataset Sub-dataset1 Sub-dataset2

50% MSE Loss 0.0047 0.0038 0.0056

Similarity Measure 0.9541 0.9520 0.9561

Summed Value Error 0.0060 0.0068 0.0052

60% MSE Loss 0.0068 0.0042 0.0094

Similarity Measure 0.9482 0.9517 0.9447

Summed Value Error 0.0096 0.0122 0.0070

70% MSE Loss 0.0017 0.0016 0.0019

Similarity Measure 0.9632 0.9602 0.9661

Summed Value Error 0.0089 0.0095 0.0082

85% MSE Loss 0.0016 0.0017 0.0016

Similarity Measure 0.9649 0.9618 0.9679

Summed Value Error 0.0090 0.0104 0.0076

100% MSE Loss 0.0019 0.0019 0.0020

Similarity Measure 0.9668 0.9641 0.9695

Summed Value Error 0.0094 0.0108 0.0081

Mean MSE Loss 0.0033 0.0026 0.0041

Similarity Measure 0.9594 0.9580 0.9609

Summed Value Error 0.0086 0.0099 0.0072
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The essence of this method is the establishment of a mapping relationship between the surface mesh of the
simulation domain and distributions of physical variables on certain two dimensional cut planes. With this
method, the optimization process of an engineering system with complex geometry features such as LPES could
be accelerated by utilizing the database created by various means to evaluate the performance of new designs.

Nomenclature

GNNs Graph Neural Networks
CNNs Convolutional Neural Networks
LPES Low-pressure Steam Turbine Exhaust System
AE Autoencoder
VAE Variational Autoencoder
CVAE Conditional Variational Autoencoder
KLD Kullback-Leibler divergence
MSE Mean Squared Error
SVE Summed Value Error
SSIM Structural Similarity Index Measure
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