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Abstract

Preliminary design is a crucial step in the turbomachinery aerodynamic
design process, which involves the initial conceptualization and serves as
the foundation for subsequent detailed design and analysis. During prelim-
inary design, designers typically use a combination of empirical correlations,
simplified flow models, and computational tools to evaluate the impact of
different design parameters on the machine’s performance. This iterative
process heavily relies on the designer’s experience and knowledge, and
errors made during preliminary design may not be rectifiable in later design
phases. To address this challenge, this paper proposes a novel optimization
strategy for turbomachinery aerodynamic preliminary design using active
subspace. The method utilizes active subspace techniques to reduce the
dimensionality of the design space, making efficient and accurate explor-
ation of the space possible. In addition, the open-access Multall turboma-
chinery design suite is employed to evaluate the aero-thermal performance
of different designs. The method was then utilized to optimize the aero-
dynamic design of the blade profile for a ducted fan. Results show that the
optimization strategy can identify the most significant directions in the
design space, providing designers with a clear path to achieving an optimal
design. Overall, the proposed method can be of good value to the turbo-
machinery design community attribute to its reduced dependence on the
designer’s experience and elevated efficiency of the design process.

Introduction

In recent years, with the development of aviation power systems, electric-
driven distributed propulsion systems have become a research hotspot
and have been applied to small and medium-sized aircraft (Yang et al.,
2021). Compared to the traditional propulsion engine using fossil fuel,
the all-electrical energy propulsion system has a great advantage in
energy-using efficiency, operational cost, the environmental influence. In
the thin-haul aviation operation, Dramatic reductions in energy costs are
anticipated by Distributed Electric Propulsion (DEP) aircraft instead of
aircraft with the conventional propulsion system by almost 84%.
Moreover, the energy cost has cut operating costs by nearly 31% (Kim
et al., 2018). Moreover, it also significantly increases the nose plane
taking off and landing and the emissions of incomplete combustion pro-
ducts like CO2, SO2, NO2, and so on. A ducted fan driven by electri-
city is an important equipment for the electric propulsion system.
Comparing standard rotors and propellers, ducted fans of the same size
not only can produce stronger power and less noise (Wick et al., 2015),
and its flow in the edge of blades is easier controlled (Perry et al., 2018),
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but also make an aerodynamic structure more compact, improve the safety performance and lower noisy sound
due to the ring effect of the duct (Li and Gao, 2005). It dramatically benefits the aircraft whole efficiency, cap-
ability, and flight stability.
The optimization of aerodynamic design of fan blades has been a topic of interest for several decades. In

1926, Mark et al. introduced a novel turbomachinery design system, T-AXI, which incorporated a duct fan
blade geometry generator that allowed for the visualization and calculation of the aerodynamic characteristics of
various blade components (Turner et al., 2010). Recently, Nsukka et al. proposed a simplified method for
designing fan blade bases using conformal transformations based on the Zhukovsky transformation. Additionally,
in 2019, Denton introduced the open-source turbomachinery aerodynamic design platform (Multall), which
includes a meanline design module, blade geometry generator, and a 3D flow solver (Denton, 2017). To assess
the fidelity of the Multall solver in simulating internal flow in low-speed turbomachinery, Piero et al. utilized the
Multall 18.3 software to predict the steady-state flow field in the annular sector of a 315 mm tubular axial fan
(Danieli et al., 2021). The results indicated that the predicted pressure curve and the aerothermal efficiency ten-
dency were in good agreement with experimental data, as well as with results from the state-of-the-art commercial
software. Various optimization methods have been employed in the design of fan blades, leading to improved
efficiency and performance. For instance, Cho used the gradient optimization method to design a ducted fan
blade with the same efficiency but a 30% larger tip clearance (Cho et al., 2009). In general, most optimization
methods rely on gradient or fuzzy positive correlation in search of an optimal design, and the curse of dimension-
ality remains a key problem. For turbomachines with tens of design parameters per blade row, numerous trials
are required to search for an optimal design. Thus, adopting high-fidelity simulations in the optimization process
for even a medium number of design parameters can be computationally expensive and time-consuming.
One emerging approach is the so-called “active subspace optimization method,” which identifies the primary

direction in a design space, and quite promising progress was achieved in several gas-turbine-related applications.
For instance, Ashley et al. established a subspace to design temperature probes with the goal to minimize hyster-
esis pressure loss and the ratio variation with Mach number. They obtained a relatively excellent temperature
probe design (Scillitoe et al., 2020) by weighing the impact of design parameters on the design goal using linear
combination weights. Additionally, Pranay used the active subspace method to reduce the dimensionality of a
25-dimensional fan blade design space to a 2-dimensional active subspace (Seshadri et al., 2018). They then
created 2D contour maps to visualize the relationship between four target variables: cruise efficiency, cruise pres-
sure ratio, maximum climb flow capacity, and sensitivity to fan manufacturing errors. Based on these maps, they
recommended optimizing the blade design by exploring the high-dimensional design space. More recently, Wang
et al. and Wei et al. applied the active subspace method to the uncertainty quantification (Wang et al., 2020,
2021) and design optimization (Wei et al., 2023) in turbulent combustion. The scope of the paper is to take a
further step and develop a toolkit for rapid optimization of turbomachinery blade using the active subspace
method and Multall turbomachinery design platform. Four main steps of the methodology involve the following:

1. Producing blade design data,
2. Constructing the active subspace in terms of adiabatic efficiency, mass flow, and pressure ratio,
3. Establishing optimization equations,
4. Solving the optimization problem and constructing a 3D model of the optimized turbomachinery blade.

Results and discussion

A previously designed ducted fan for general aviation was selected to demonstrate the effectiveness of the pro-
posed method. This section is oriented as follows: The first subsection describes the development of a
Python-based numerical framework. This software platform allows one to model the performance of the ducted
fan using numerical methods. Using Python, one can automate many of the calculations and explore the design
space quickly. The second subsection defines the target design space. It involves specifying the range of values for
each design parameter, such as reaction, flow coefficient, workload, fan diameter, etc., sampling over the design
space of interest, and generating a set of candidate designs. The third subsection analyses sensitivity, including
analysing how does the sample size affect active subspace dimensions or eigenvalues. The fourth subsection
focuses on constructing and solving the optimization equation. It involves using mathematical techniques to con-
struct an equation that relates the active subspace variables to the adiabatic efficiency of the ducted fan. One can
then solve this equation to find the optimal values of the design variables that maximize adiabatic efficiency. The
last subsection documents the results of the optimal aerodynamic design.
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Numerical framework

All the CFD results reported in this paper were obtained using the Multall turbomachinery design system
in-house flow solver. The system comprises of three related programs developed using FORTRAN77: MEAGEN,
STAGEN, and a 3D solver. MEAGEN performs a 1D calculation to obtain velocity triangles, set annulus
boundaries, generate initial blade shapes, and twist them for a free/forced vortex design. The output file from
MEAGEN serves as an input file for STAGEN, which defines the blade shapes. The 3D blade is generated by
stacking and combining 2D blade shapes into stages. Finally, the Multall system reads the input file written by
STAGEN and performs a 3D multistage calculation to predict the detailed flow pattern and overall performance.
The roadmap of the design system is shown in Figure 1.
To automate the process, it would be beneficial to integrate the Multall turbomachinery design system within

a Python-based blade optimization framework. One way to achieve this is by using function libraries, which are
simple and cost-effective. Using a dynamic link library (DLL) instead of a static link library allows for repeated
calls without wasting resources and can be changed without recompiling. Given the system’s structure, it is neces-
sary to convert the three linked programs into DLLs, each corresponding to a specific aspect of the system. The
main program can then call these DLLs in sequence, as shown in Figure 2. This approach enables more seamless
integration of the Multall design suite with the Python-based optimization framework, making it easier for users
to design and optimize turbomachinery blades.

Target design space and sampling strategy

This section describes the exercise conducted on a single-stage ducted fan. It focuses on generating multiple
blade-shape design samples using Gaussian random sampling. First, a design space of 16 parameters is estab-
lished, listed in Table 1. The blade-shape design parameters serve as input parameters, while the three aero-
thermal performance metrics are objectives to train the active subspace. This approach helps identify the most

Figure 1. Roadmap of turbomachine aerodynamic design process using Multall.

Figure 2. The Python-based blade optimization framework with integration of Multall.
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critical input parameters that impact the performance metrics most, allowing for more efficient optimization of
blade designs.
The design parameters are defined around normal values and sampled using Gaussian random sampling with

N = 344. The range of each parameter is listed in Table 1. Each sample set x̂j is a vector of 16 dimensions and
the value of each element falls within the range [xl , xu], its description is:

x̂j ¼ N (μ, σ2) (1)

x̂j represents the vector of jth samples of input parameters. μ is a m-vector and equal to the average of xl and xu,
shown in Equation (3). According to sigma rules, σ is defined:

σ ¼ xu � μ

3
(2)

μ ¼ xu þ xl
2

(3)

Table 1. List of design parameters and sampling space.

No. Parameter Symbol Nominal
value

Lower
limit

Upper
limit

Unit

1 Reaction Ω 0.6 0.54 0.66 –

2 Flow coefficient Φ 0.7643 0.68787 0.84073 –

3 Loading coefficient ψ 0.6269 0.56421 0.68959 –

4 Radius R 0.325 0.2925 0.3575 M

5 Blade axial chord 1st row bax_1st 0.12 0.108 0.132 M

6 Blade axial chord 2nd
row

bax_2nd 0.1 0.09 0.11 M

7 Row gap Grow 0.2 0.18 0.22 chord

8 Stage gap Gstg 0.5 0.45 0.55 chord

9 First row deviation angle δ1st row 6 3 9 deg

10 Second row deviation
angle

δ2nd row 6 3 9 deg

11 First row incidence angle i1st row −4 −2 −6 deg

12 Second row incidence
angle

i2nd row −4 −2 −6 deg

13 First row LE QO angle SLE 1st row 88 84 92 deg

14 First row TE QO angle STE 1st row 92 88 96 deg

15 Second row LE QO
angle

SLE 2nd

row

92 88 96 deg

16 Second row TE QO
angle

STE 2nd

row

88 84 92 deg
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As to the sample size requirement, the size of samples must be larger or equal to G ¼ αk(mþ 1) In(m). An
oversampling factor, α, between 2 and 10 is typically selected in practical applications. This ensures that the
sample is large enough to capture the variability in the data and provide statistically significant results. Lastly, a
normalization process is employed to ensure that the analysis is not affected disproportionately by parameters
with larger values. The normalization process involves transforming the input parameter vector x̂j of each sample
to a standard range. This standard range centers all the transformed parameters at zero, making them dimension-
less and giving them equal weight in the analysis. The standard range of the transformed parameters is [�1, 1]m,
where m is dimension of the design space. The normalization is carried out using Equation (4).

xj ¼ 1
2
(diag(xu � xl )x̂j þ (xu þ xl )) (4)

Active subspace identificaiton

This study carried out active subspaces for three critical aero-thermal parameters of the ducted fan. The first
objective is to optimize the adiabatic efficiency of the single-stage fan, which is the primary focus of the study.
The second objective is the flow capacity of the fan, which is restricted in this study. The third objective is to
ensure that the pressure ratio of the fan is equal to the pressure ratio of the baseline design.

In term of adiabatic efficiency

An active subspace for adiabatic efficiency is sought to capture its variation in 16-dimensional space with fewer
dimensions. The goal is to construct an active subspace that reduces the dimensionality to the expected dimen-
sion, which is determined by evaluating the gap in the eigenvalues (Constantine, 2015).
The first step is to calculate the subspace eigenvalues of each dimension using gradient decomposition. If gra-

dients are not available, finite difference approximations can be used to obtain approximate values of the gradi-
ent. In this study, the small design space makes it feasible to use finite difference approximations. eigenvalues λk
and corresponding eigenvectors ηk are obtained for each dimension k = 1, ……, 16. The eigenvalues are then
plotted on a log scale, as shown in Figure 3. Figure 3(a) shows that the largest gap lies between the 1st and 2nd
index, indicating that the most suitable active subspace is one in this case. Figure 3(b) plots the estimated eigen-
values along with the bootstrap intervals and shows that the calculation error in the scenario of a single dimen-
sion is the smallest.
The main idea behind subspace dimensionality reduction is to use matrix multiplication between the input

parameter vector and a tall transformed matrix, reducing the high dimensionality of m to a lower dimensional s.
The transform zj ¼ MTxj is called a forward map, where zj [ Rs, xj [ Rm, M [ Rm�s. It maps the
m-dimensional design vector to an s-dimension coordinate. The transform matrix is determined by the eigenva-
lues and eigenvectors, and a large gap between the sth and (s + 1)th eigenvalue indicates a strong univariate trend
between the objective yi and the combined matrix of the first s eigenvectors, M ¼ (η1, η2, � � � , ηs)T xj
(Constantine, 2015). In this study, the first eigenvalue was found to have the largest gap, indicating that the
transform matrix M 1 for the efficiency active subspace is a matrix stacked with the first eigenvector. This matrix

Figure 3. The eigenvalues (a) and subspace errors (b) of adiabatic efficiency active subspace.
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is described:

M 1 ¼ (0:431,�0:091, 0:188, 0:783,�0:071,�0:007,�0:013,�0:001,�0:288,

�0:075,�0:164,�0:146,�0:111,0:199,0:484,�0:001)T
(5)

Furthermore, Figure 4 shows the relationship between the forward map z and the adiabatic efficiency y1. The
figure depicts a manifold relationship between the map of 16 design parameters and adiabatic efficiency y1, indi-
cating that the most significant direction of the design parameters space, along which the largest change of the
adiabatic efficiency occurs, has been successfully identified. As shown in the figure, adiabatic efficiency varies as a
quadratic function curve along a single vector in the 16-dimensional design space. This confirms that the active
subspace has reduced the high-dimensional design space to a lower dimensional space capturing the most signifi-
cant variations in the objective.

In term of mass flow rate

Following the same procedure, the active subspace for mass flow is identified. Same as the adiabatic efficiency,
the largest gap between adjacent eigenvalues in the scenario of mass flow also lies between the 1st and 2nd
index, shown in Figure 5(a). Additionally, a single dimension also yields the smallest error, shown in Figure 5(b).
Lastly, the transform matrix, M 2, is obtained. The scatter plot, Figure 5(c), indicates a fairly linear connection

Figure 4. Scatters of adiabatic efficiency in efficiency active subspace.

Figure 5. The eigenvalues (a), subspace errors (b) and scatters of mass flow (c) in mass flow active subspace.
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between the subspace MT
2 x and mass flow y2.

M 2 ¼ (0:036, 0:272,�0:165, 0:293,�0:018,�0:008, 0:017, 0:08, 0:845,

0:102,�0:253,�0:126,�0:109,�0:059,�0:003,�0:047)T
(6)

In term of pressure ratio

Lastly, the active subspace for the total-to-total pressure ratio is identified. Similarly, the largest gap between adja-
cent eigenvalues in the scenario of total-to-total pressure ratio also lies between the 1st and 2nd index, shown in
Figure 6(a), and a single dimension yields the smallest error, shown in Figure 6(b). Lastly, a linear connection
between the subspace MT

3 x and mass flow y3 was spotted, shown in Figure 6(c).

M 3 ¼ (2:55e�2,�6:22e�4,�4:41e�1,�8:84e�1, 8:57e�4,�1:01e�3, 1:57e�3,�3:92e�4,

�1:47e�1, 1:05e�2, 4:29e�2, 8:02e�3, 4:29e�3, 1:44e�2,�9:69e�4, 7:41e�3)T
(7)

To summarize, this section discusses the use of active subspaces to identify dominant directions in a high-
dimensional design space. By using this technique, the authors were able to reduce the dimensionality of the
design space and identify the most significant design parameters affecting the performance of a ducted fan.
Results show that active subspace exists for fan adiabatic efficiency, mass flow rate, and total-to-total pressure,
and the most suitable dimension for all three parameters is one. For adiabatic efficiency, a manifold relationship
between the subspace and adiabatic efficiency is observed, where the adiabatic efficiency varies as a quadratic
function curve along a single vector in the 16-dimensional design space. A fairly linear connection between the
subspace and the parameter is concluded for mass flow and total-to-total pressure ratio.

Fidelity analysis

Despite the promising result presented in the above section, questions remain such as independence of the active
subspaces, sensitivity of parameters, and accuracy of manifold modelling. This section investigates the fidelity of
the active subspace approach. First, to verify the independence of the previously identified active subspaces, add-
itional data samples can be generated randomly in the design space and used to compute the subspaces again. If
the resulting subspaces are similar to those computed earlier using the limited number of samples, it can be con-
cluded that the subspaces are independent of the specific data samples used and represent the dominant direction
of the objective in the whole design space. To investigate the sensitivity of various design parameters, the gradient
of the objective function for each design parameter can be calculated using the active subspace. This will provide
insight into which design parameters impact the objective most and can be used to guide the optimization
process. Lastly, a manifold model can be fitted to the data in the active subspace, which can be done using linear
regression for a linear model or polynomial regression for a quadratic model. The accuracy and fitness of the
model can be evaluated using statistical metrics such as the R-squared value and mean squared error.

Independence of active subspace

Two questions need to be addressed to verify the independence of the active subspaces from the data samples.
The first question is whether the active subspaces would differ with different sample contents for the same

Figure 6. The eigenvalues (a), subspce errors (b) and scatters of pressure ratio (c) in pressure ratio active subspace.
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sample size, and the second question is whether the sample size can affect the result of the active subspaces. This
section uses a series of samples of different sample counts to investigate the effect of the sample size on the active
subspaces. The recommended sample size G ¼ αk(mþ 1)In(m) is used to set the upper and lower bounds for
the smallest sample size for finding a functional subspace. The constant α is an oversampling factor typically
chosen to be between 2 and 10. Gaussian random sampling is used to select numerous data samples from the
design space, with sample sizes ranging from 100 to 500 with an interval of 50. These samples are used to
perform simulations and obtain the objective metrics for finding the active subspaces. The results for the adia-
batic efficiency subspace are shown in Figure 7. There is little difference in the eigenvalues for sample size
varying from 100 to 500, shown in Figure 7(a). The subspace error and eigenvector components also change
within the permissible error range, as shown in Figures 7(b) and 7(c).
Additionally, the independence of the mass flow rate subspace is also shown in Figure 8. Figures 8(a) and 8(b)

demonstrate no significant difference in the existing eigenvalues and subspace errors for each dimension among
different sample sizes. The subspace components also fluctuate only slightly within a very small range. Lastly,
Figure 9 shows that the pressure ratio subspace is almost unaffected by the training samples, as the curve remains
the same as the sample size increases. These results demonstrate that the active subspaces discussed in Section 2.3
are independent of the data samples used in the calculation process.

Sensitivity analysis in terms of parameters

In Section 2.4.1, it is demonstrated that the elements of transformed matrices M are independent of the size and
content of the samples used in the calculation process. These matrices are used to transfer the 16D design space
to a 1D space, with aero-thermal performances serving as the objective metric. This means that the active sub-
spaces are also a combination of all design parameters, with coefficients linking each parameter to the significance
of the objective. A larger coefficient indicates that the objective value is more sensitive to changes in the related
parameter. Figure 10 plots the eigenvector components of each active subspace and the component weights of all
design parameters. In Figure 10(a), the adiabatic efficiency active subspace has 16 components associated with
the 16 design parameters. The height of each column in each index corresponds to the influence of the

Figure 7. The independence verification for adiabatic efficiency subspace: eigenvalues (a), subspace errors (b) and

eigenvector components (c).

Figure 8. The independence verification for mass flow subspace: eigenvalues (a), subspace errors (b) and eigen-

vector components (c).
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parameters on adiabatic efficiency. The largest perturbation is caused by Radius, followed by Reaction, First-row
deviation angle, and so on. Figure 10(b) shows the distribution of elements for vector M 2, which represents the
contribution to the dominant direction. This figure shows that design variables such as First-row deviation angle,
Radius, and Flow Coefficient have greater weights in the direction. In contrast, Second-row LE QO angle, Blade
Axial Chord 2nd row, and Stage Gap have less influence. Lastly, Figure 10(c) indicates the significance of the
components corresponding to M 3 in the active subspace. Increasing the pressure ratio is mainly achieved through
changes in the Radius and Loading Coefficient, with the remaining design variables contributing less to this
objective. Overall, these findings highlight the important role that each design parameter plays in determining
the overall performance of the ducted fan, as well as the usefulness of the active subspace methodology in identi-
fying the most critical parameters.

Fitting curve of active subspace

This section uses polynomial fitting to build fitting curves in the active subspaces. Polynomial fitting aims to
establish a functional relationship between the map z ¼ MTx and the objective y using a polynomial with
degree n.

y ¼ a0 þ a1z þ a2z2 þ � � � þ anzn (8)

where n can be any positive integer.
The scatter plots in Figures 4(a), 5(c), and 6(c) show the distribution of design samples in each active sub-

space. Based on these scatter plots, linear or quadratic responses may fit the trend of the scatter distribution very
well. Therefore, using first-order polynomial and secondary-order polynomial to fit the objectives y1,y2,y3 in their
subspaces.

y ¼ a0 þ a1z (9)

y ¼ a0 þ a1z þ a2z2 (10)

Figure 10. The eigenvector components and corresponding weight of desigen paramenters: effciency active sub-

space (a), mass flow active subspace (b), pressure ratio subspace (c).

Figure 9. The independence verification for pressure ratio subspace: eigenvalues (a), subspace errors (b) and eigen-

vector components (c).
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To compute the coefficients associated with the models, Equations (9) and (10) are built using samples. To
choose the best function curve fitting the plots, the correlation coefficients of the two functions in all active sub-
spaces must be compared. Figure 11(a) compares the correlation coefficients of the first-order and second-order
polynomials with different sample sizes in the efficiency subspace. The graph shows that the line of the
second-order polynomial fitting is above that of the first-order polynomial from beginning to end, indicating
that the quadratic curve has a stronger correction of sample scatters in the efficiency subspace. Furthermore, the
quadratic curve tends to be stable, and the coefficients in the line still drop as the sample size increases. Thus,
the second-order polynomial fitting is chosen, and the related coefficients are computed using Equation (11).

f1 ¼ 0:937þ 0:0104z1 � 0:00433z21 (11)

where f1 is the proper function of efficiency active subspace based on 300 training samples. The coefficient R2
1 is

0.873. The polygonal lines in Figures 11(b) and 11(c) show a small distance, and fitting curves of different
sample sizes all share high coefficients. Considering calculation convenience and the light influence of the two
constraint objectives to optimize blade efficiency, mass flow and pressure ratio active subspaces use first-order
polynomial fitting, shown in Equations (12) and (13).

f2 ¼ 91:739þ 3:333z2 (12)

f3 ¼ 1:204� 0:0491z3 (13)

where f2 and f3 are the appropriate functions of mass flow and pressure ratio active subspaces, respectively, both
calculated using 300 samples. Their coefficient R2

2 and R2
3 are 0.972 and 0.998, separately. Finally, the fitting

curves with sample scatters are displayed in Figure 12.

Optimization of a single-stage fan blade

This section focuses on optimizing a single-stage fan blade with specific parameters shown in Table 1. Using the
Multall solver, the adiabatic efficiency, mass flow, and pressure ratio of the fan are computed as 93.401%,

Figure 11. Correlation coefficients of two fitting curves in different sample size: adiabatic efficiency (a), mass flow (b)

and pressure ratio (c).

Figure 12. Fitting curves in active subspace: adiabatic efficiency (a), mass flow (b) and pressure ratio (c).
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92.022 kg/s, and 1.202, respectively. The main objective of the optimization is to maximize the adiabatic effi-
ciency while keeping the mass flow and pressure ratio constant. An equation group that includes constraint equa-
tions from the mass flow and pressure ratio active spaces and an objective equation from the efficiency space is
constructed to achieve this objective. The equation assembly is presented in Equation (14).

max 0:937þ 0:0104z1 � 0:00433z21

91:739þ 3:333z2 ¼ 92:022
1:204� 0:0491z3 ¼ 1:2022
z1 ¼ M 1x
z2 ¼ M 2x
z3 ¼ M 3x
xmin � x � xmax

8>>>>>><
>>>>>>:

(14)

Prio to solving the above equation assembly, it is important to analyze the monotonicity of the objective func-
tion with respect to the constraints. By examining the plot of the quadratic function, it is evident that the object-
ive function first increases and then decreases at the axis of symmetry �b=2a ¼ 1:205. Therebefore, it is
necessary to get the value range of z1, the other maximizing problem shown in Equation (15).

max z1 ¼ M 1x
M 2x ¼ 0:084995
M 2x ¼ 0:035272509
xmin � x � xmax

8<
: (15)

This optimization problem is solved using the simplex algorithm, and the resulting design vector x0max is
shown in Equation (16), which corresponds to the maximum value of z1. As the maximum value of z1 is 1.567,
which is greater than the axis of symmetry at 1.205, it can be concluded that the maximum efficiency of
94.337% is achieved when z1 = 1.205.

x0max ¼ (6:6, 0:689, 0:564, 0:34, 0:108, 0:11, 0:18, 0:45, 5:572, 9, �2,�2, 84, 88, 96, 92)T (16)

Furthermore, Equation (14) can be transformed as a group of indefinite equations, shown in Equation (17).

M 1x ¼ 1:20471
M 2x ¼ 0:084995
M 2x ¼ 0:035272509
xmin � x � xmax

8>><
>>:

(17)

Since three equations can only solve for three unknowns, the three most sensitive parameters – radius, first-row
deviation angle, and loading coefficient – are selected as unknowns in Equation (17). The other parameters are
considered as known values obtained by average random sampling in the design space. However, it was found
that Equation (17) was difficult to solve by directly sampling the entire design space. Only a small region in the
design space could be mapped to 1.20471 or greater in the efficiency active subspace. Therefore, an effective
method was to limit the sample space to the vicinity of x0max. Each design parameter was selected from a region
centered on x0max in the design space. The length of the region in each dimension was set to be 10% of the
length of the design space.
Lastly, a total of thirty sets of unknowns were sampled using average random sampling, and by solving

Equation (17), 30 optimized fan designs were produced. The aero-thermal performances of these designs were
then calculated using the Multall solver, and the results are shown in Figure 13. Figure 13(a) shows that the adia-
batic efficiency of the optimized fans was, on average, higher than that of the baseline design, but it did not
reach the highest theoretical efficiency. Some issues with the fitting curves may need to be addressed to improve
efficiency further. Figure 13(b) indicates that the mass flow of the optimized fans was slightly different from the
base mass flow, but it centered around 90.656. Based on this result, the authors proposed changing the aimed
mass flow from 92.022 to 93.388, as mass flow has a strong linear changing tendency. On the other hand, the
pressure ratios of the optimized fans remained largely unchanged compared to those of the base fan, as shown in
Figure 13(c). To correct the target value of the indefinite equation, the authors first noticed that the scatter

J. Glob. Power Propuls. Soc. | 2024 | 8: 24–38 | https://doi.org/10.33737/jgpps/184214 34

Xu and Lou | A rapid method for turbomachinery aerodynamic design https://www.journalssystem.com/jgpps/,184214,0,2.html

https://doi.org/10.33737/jgpps/184214
https://www.journalssystem.com/jgpps/,184214,0,2.html


distribution on the horizontal axis in Figure 11(a) was limited below 0.8, which made the fitting curve heavily
dependent on the data below 0.8 and imprecise at the largest value point. To address this issue, the authors set
groups of random aimed values above 0.8 of M 1x in Equation (17) and regenerated the fitting curve with new
samples. Then, the aimed value of mass flow in Equation (14) was set to 93.388, and new fan designs were
reproduced.
After implementing the corrections discussed above, Figure 14(a) plots the fitting curve of the efficiency,

which was generated using 200 new special samples, and an excellent result was obtained, as seen in Figure 14(b),
where the mass flow was around the base value of 92.022 with a 95% confidence limit zone. The fitting function
is described in Equation (18).

f 01 ¼ 0:937þ 0:0117z1 � 0:007z21 (18)

Figure 14. The corrected results: adiabatic efficiency (a) and mass flow (b).

Figure 13. Aero-thermal proformance of 20 optimized fans: adiabatic efficiency (a), mass flow (b) and pressure ratio (c).

Table 2. Aero-thermal performance of the optimized fan designs.

Fan index 1 2 3 4 5 6 7 8 9 10

Adiabatic efficiency 0.944 0.944 0.942 0.943 0.943 0.943 0.943 0.943 0.943 0.943

Mass flow (kg/s) 92.164 92.166 92.07 92.023 91.976 91.966 92.132 92.107 92.065 92.009

Pressure ratio 1.203 1.202 12.02 1.201 1.201 1.202 1.201 1.202 1.202 1.202
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Table 3. Design choices for the optimized fan blade.

Design Parameter Value Unit

Reaction 0.651 —

Flow coefficient 0.811 —

Loading coefficient 0.581 —

Radius 0.337 m

Blade axial chord 1st row 0.112 m

Blade axial chord 2nd row 0.090 m

Row gap 0.215 chord

Stage gap 0.540 chord

First row deviation angle 5.222 deg

Second row deviation angle 3.949 deg

First row incidence angle −2.781 deg

Second row incidence angle −2.618 deg

First row LE QO angle 84.625 deg

First row TE QO angle 95.568 deg

Second row LE QO angle 94.822 deg

Second row TE QO angle 84.494 deg

Figure 15. 3D model of the optimized ducted fan with 18 rotors and 4 stators.
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The best value point of this function was found to be 0.82, which corresponded to the highest efficiency of
94.21%. As a result, the value of 0.82 was set as the final aimed value of M 1x in Equation (17), along with the
desired value of the mass flow, to solve the indefinite equation group using the abovementioned method. The
results of the optimized fan after adjusting the aim value are presented in Table 2.
Finally, the blade design with the highest efficiency was chosen as the optimal design, with an adiabatic effi-

ciency of 0.944, mass flow of 92.164, and pressure ratio of 1.203. The primary parameters of the optimized fan
are presented in Table 3. Additionally, the blade shape parameters obtained from the optimization process are
used to generate a profile file by recalling a customized Multall solver, which includes the 3D coordinates of the
stator and rotor. Matlab codes are then used to convert the profile file into a format that can be used in
Solidworks software. The resulting 3D model of the optimized ducted fan is presented in Figure 15.

Conclusions

The preliminary design of turbomachinery aerodynamics traditionally relies heavily on the engineer’s experience,
which can be a time-consuming and inaccurate process. To address this challenge, this paper proposes a novel
optimization strategy for turbomachinery aerodynamic preliminary design using active subspace. The method uti-
lizes active subspace techniques to reduce the dimensionality of the design space, making efficient and accurate
exploration of the space possible. The proposed method was applied to a single-stage fan, where the goal was to
optimize the adiabatic efficiency while keeping the mass flow and pressure ratio constant. The following key find-
ings were highlighted:

1. The active subspace optimization method is robust and efficient, requiring minimal trial cost to quickly opti-
mize the aerodynamic design of the single-stage fan blade.

2. The active subspace can be calculated independently of the training sample calculation process.
3. The active subspace represents the primary direction in which the objective changes the most, while the

orthogonal direction remains steady, allowing for efficient optimization in a low-dimensional space.

To conclude, the proposed methodology presents a promising approach for accurate and rapid optimization of
turbomachinery aerodynamics design. However, this approach has some limitations, including the fitting curve’s
dependence on data and possible errors. Further exploration of optimization design methods remains critical for
preliminary design.

Nomenclature

x̂j the vector of blade parameters for the jth training sample
xl the vector of the lower boundary for design space
xu the vector of the upper boundary for design space
μ the vector of standard deviation in Gaussian random sampling
σ the vector of average in Gaussian random sampling
xj the vector of normalized x̂j
zj the forward map of xj in active subspace
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