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Abstract

The impulse response method is widely used for heat transfer analysis in
turbomachinery applications. Traditionally, the 1D method assumes a: linear
time invariant, isotropic, semi-infinite block with planar surfaces and does
not accurately model the true geometric behaviour. This paper evaluates
the error introduced by the planar assumption and outlines the required
modifications for accurate freeform surface analysis. Adapted cylindrical
basis functions are defined for the impulse response method and used to
evaluate the impact of the 1D planar assumption. The analytic solutions for
both convex and concave surfaces are presented. A penta-diagonal algo-
rithm, for a modified numerical Crank-Nicolson scheme, is also evaluated
for fast stable implementation of curved geometry simulation. The scheme
shows comparable performance to the impulse response, whilst removing
the requirement for linear time invariance. The new methods are demon-
strated in the case of aerothermal analysis for heat transfer in a turbine
nozzle guide vane. A 3D ANSYS simulation is used as a benchmark and
further highlights the importance of the curvature effects. The methods are
extended using curvature mapping for infra-red camera data, enabling
direct 3D thermal simulation or the fast calculation of freeform curvature.
This paper defines the methodology to analyse heat transfer measurements
on non-planar geometry.

Introduction

Linear cascades are routinely used to analyse aerodynamic performance
of turbine components. Heated compressed air is passed through the
test cascade, optionally with cooling flow, to conduct heat transfer mea-
surements. Thin film gauges or infra-red thermography are used to
record high frequency surface temperature measurements, without
impeding design form or profile. The data is commonly post-processed
using the impulse response method (Oldfield, 2008). In most practical
heat transfer applications, the evaluated geometry is not simply a planar
surface. In such cases, the 1D Cartesian assumptions used to define the
impulse response rarely hold. As a result, direct application of the trad-
itional impulse response method leads to errors in the analysis. Particular
importance is given to the handling of freeform surfaces, which are espe-
cially prevalent in turbine components and casings. The impact of geo-
metric curvature is quantified in this paper and a new radial 1D method
is presented to enable accurate heat transfer analysis of non-planar
systems.
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Buttsworth and Jones (1997) examined the effect of radial convection on both convex and concave geometries.
They demonstrated an approximate Heat Transfer Coefficient (HTC) correction which altered a flat plate equiva-
lent HTC by a simplified material dependent curvature term. The method was tested against the analytic solu-
tions defined by Carslaw and Jaeger (1947) which are discussed in the following section, Equations 9 and 10.
Buttsworth and Jones’s truncated series assumed negligible heat penetration depth and the error was shown to
vary significantly depending on the Biot and Fourier number. The method was most reliable on concave geom-
etry but is only valid for very short duration tests.
In 2008 Martin Oldfield evaluated the cylindrical surface temperature, for unit step heat flux, on the convex

case only. This paper now fully defines the cylindrical impulse response functions, using the Carslaw and Jaeger
analytic results, to allow direct implementation for both the convex and concave cases. The modified filter func-
tions enable the error in the planar assumption to be quantified and avoid the need for flat plate approximations
when analysing heat transfer in curved and freeform geometry.

Cylindrical 1D heat equation

When analysing the effects of curvature, the radial heat flow in a cylindrical system can be used. Freeform sur-
faces can be accurately approximated by a single curvature, simply taking the mean principal radius. The 1D
assumptions are then valid but are subject to additional criteria. Firstly, the radial heat flow must be significantly
greater than the axial and circumferential heat flow.

Radial assumption :
@2T
@r2

� @2T
@θ2

;
@2T
@z2

(1)

Secondly, when evaluating heat flux into the cylinder, the normal semi-infinite behaviour defined by Schultz
and Jones (1973) cannot be assumed as r ! 0. Similar to heating a flat plate from multiple sides, which forces
the 1D semi-infinite depth to be half the plate thickness; the semi-infinite duration in a cylinder is limited by
the penetration depth to its centre and thus limited by the minimum radius of curvature. If these two assump-
tions are valid, along with the standard assumptions required by impulse response analysis (isotropic, constant
uniform material properties, linear time invariant, zero initial state), the heat equation in a cylindrical coordinate
system can be used to define the curvature basis function.

@T
@t

¼ α
@2T
@r2

þ 1
r
@T
@r

� �
(2)

Taking the Laplace transform with zero initial conditions, Abramowitz and Stegun (1972), Equation 2 can be
rearranged to give a second order modified Bessel differential equation Carslaw and Jaeger (1947).

�
d 2ϕ(r, s)

dr2
þ 1

r
dϕ(r, s)

dr

�
� s
α
ϕ(r, s) ¼ 0 (3)

Equation 3 has the well-known general solution given by the modified Bessel functions.

ϕ(r, s) ¼ A(s)I0 r

ffiffiffi
s
α

r� �
þ B(s)K0 r

ffiffiffi
s
α

r� �
(4)

Two separate conditions, shown in Figure 1, must be considered when solving Equation 4.

1. Heat flux radially inwards, to a solid cylinder, bounded by the region 0 , r , R
2. Heat flux radially outwards, to a semi-infinite substrate with a hole, bounded by the region R , r , 1
In Case 1, the solution must remain finite as r ! 0 and the solution is governed by the modified Bessel function
of the first kind I (s). In Case 2, the solution must remain finite as r ! 1 and the solution is defined by the
modified Bessel function of the second kind K (s).
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ϕ(r, s) ¼
A(s)I0 r

ffiffiffi
s
α

r� �
0 , r � R

B(s)K0 r
ffiffiffi
s
α

r� �
R � r , 1

8>>><
>>>:

(5)

Cylindrical unit step heat flux

Following the same methodology as the 1D planar case, the time domain form can be found by inverting the
Laplace solutions from Equation 5. Carslaw and Jaeger (1947) presented the cylindrical solutions for unit step
surface heat flux. Applying the boundary condition q(R, s) ¼ 1=s ¼ �kdϕ=dr and using the following properties
of the modified Bessel functions.

dI0(z)
dz

¼ I1(z) (6)

dK0(z)
dz

¼ �K1(z) (7)

The Laplace domain solutions for unit step heat flux, applied to a region bounded by a cylinder of radius R,
are given by

ϕ(r, s) ¼

�1
s3=2

1ffiffiffiffiffiffiffi
ρck

p
I0 r

ffiffiffiffiffiffiffi
s=α
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I1 R
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(8)

Inverting these solutions, the time domain form can be found. Case 1, radially inward heat flux to a solid
cylinder, bounded by the region of radius 0 , r , R.

T (r, t) ¼ R
k

2αt
R2

þ r2

2R2
� 1
4
� 2

X1
s¼1

e�αγ2s t=R
2 J0(rγs=R)
γ2s J0(γs)

" #
: (9)

Case 2, radially outward heat flux, to a semi-infinite substrate with a hole, bounded by the region of radius
R , r , 1.

T (r, t) ¼ 2
k

αRt
r

� �1
2

ierfc
r � R

2(αt)
1
2

� �
� (3r þ R)(αt)

1
2

4Rt
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r � R

2(αt)
1
2

� �
þ � � �

" #
(10)

Figure 1. Definition of the two radial heat flux cases that must be considered, showing the bounded region in grey

and associated boundary heat flux condition in blue.
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The solution of the second case uses the asymptotic expansion of the modified Bessel function of the second
kind Kn(r, s). This expansion is most accurate for small values of αt=R2. Carslaw and Jaeger (1947) recommend
a typical limit of αt=R2 , 0:02. In cases where this limit is exceeded, a large time approximation is available via
Equation 11 and has an error term O(R2=αt). In the application of 3D printed SLA, for long test durations to
approximately 20 s, the small value limit is not exceeded and the above expanded form in Equation 10 should
be used.

T (r, t) ¼ R
2k

ln
4αt
γr2

� �
þ O

R2

αt

� �
where, ln(γ) ¼ 0:57722 . . . is the Euler constant and αt=R2 . 0:02:

Figure 2 shows the impact of the radius of curvature on the surface temperature necessary to achieve unit step
heat flux. Two analyses were performed, the first applied unit step flux then observed the change in surface tem-
perature at different curvature radii. The second applied the planar analytic, constant flux, surface temperature
solution defined by a parabolic surface temperature T (t) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4αt=πk2
p

, then observed the change in heat flux in
the material. In SLA, surfaces with radii greater than 100 mm show only 0.5% difference in surface heat flux.
Above this threshold, surfaces could reasonably be considered planar because there is negligible modification to
the surface temperature and flux distribution. However below this threshold, particularly in high curvature cases,
a notable heat flux error is seen. The planar threshold is material and test duration dependent and should be
evaluated on a case by case basis. For radii below the threshold value, the curvature effects should not be ignored
and the system behaves notably different to a planar 1D case.
The Carslaw and Jaeger (1947) solutions in Equations 9 and 10 are quite involved and implementation of

these formula is non-trivial. The infinite series expansion terms should be added iteratively, truncating the series
only once the magnitude of the terms fall below a negligible value. The number of terms required is material
and geometry dependent so must be evaluated on a case-by-case basis. Once the surface temperature solution is
known, the curvature corrected impulse response can be defined using the methods in the following section.

Radial 1D impulse response method

Assuming that the test behaves as a 1D linear-time-invariant, isotropic, semi-infinite system; the thermal impulse
response method can be used. The response function FTq is defined by a known analytic solution pair Ta and
qa, then later used to calculate the measured heat flux qm from the measured surface temperature Tm (Oldfield,
2008). Historically all thin-film gauges, or thermal camera pixels, are assumed to behave identically and the same

Figure 2. Effect of curvature on the surface temperature and heat flux for 1D unit step solutions, q(t) ¼ U(t),

T(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αt=πk2

p
, in a SLA substrate.
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planar response filter is applied uniformly to all data in parallel. Curvature compensation requires that each thin-
film or pixel be considered unique, having its own specific curvature dependent filter. Thus curvature correction
prevents parallel processing of multiple thin-films or thermography data. This computational cost affects every
test run and may not be viable in high density thin-film applications. In such cases, a fixed range of filters for
differing radii can be defined, then an interpolation function used to correct the response output for a particular
curvature. In this way the computational cost is only increased by the number of interpolation references, rather
than the number of gauges or pixels to be post-processed. The input analytic solution Ta(r, t) is simply taken
from Equation 9 or Equation 10, depending on whether the case is concave or convex, then r selected for the
desired curvature radius and qa(r, t) set as the unit step U (t).

F i
Tq ¼ filter(U (t), Ta(ri, t), δ) (12)

qm(R, t) ¼
Xn
i¼0

wnF i
Tq

" #
�Tm(R, t)

where: wn is the interpolationweight:

(13)

In the preceding publication (Baker and Rosic, 2022), the authors showed that multilayer effects have notable
impact on the accuracy of thin-film data analysis. Full implementation of curvature correction necessitates that
each of the reflected terms be corrected for their particular interface radius. In the case of many layers, this calcu-
lation is computationally very expensive. However, if the thin-film thickness Δx (typically , 100 μm) is signifi-
cantly less than R, curvature correction can be uniformly applied. This is achieved via a compound response
function, stacking the multilayer and curvature effects. A temperature only response is generated that maps the
planar case to the radial case, Equation 14, then applied to the unit step multilayer temperature solution. The
final heat flux impulse response, Equation 15, is calculated using the modified analytical input and allows direct
post-processing of the measured surface temperature via Equation 13.

Frx ¼ filter(T (r, t), T (x, t), δ) (14)

F i
Tq ¼ filter(U (t), Frx�Tmulti(x, t), δ) (15)

Although the effects of curvature and multiple layers can be compensated, two significant limitations of the
impulse response remain: the inability to handle back surface boundary conditions and the failure to model tem-
perature dependent material effects. In such cases a 1D numerical scheme must instead be used. An adapted
scheme is defined below, extending the numerical capabilities to handle temperature-varying multilayer curvature
effects in non-planar geometry.

Radial 1D Crank-Nicolson method

The 1D Crank-Nicolson method was previously presented as an alternative post-processing solution to avoid the
time-invariant limitations of the impulse response (Baker and Rosic, 2022). This method can also be modified
for use in a cylindrical system for curvature correction. Mori and Romão (2016), and Duda (2016), presented a
polar implementation of the scheme for a single material. The bulk of the multilayer solver can be updated to
follow this solution which requires a modification to the b and c vectors only. The interfaces for heat flux con-
tinuity can be approximated by using the existing relation from the planar 1D case. This simplification has little
impact on the result, particularly if the nodal count in the simulation is high. The following modifications are
required to the Crank-Nicolson method to allow use in a cylindrical system. The resulting penta-diagonal matrix
can be solved using the algorithm described by Askar and Karawia (2015) without modification.
The single material cylindrical Crank-Nicolson solution is defined by Equation 16.

Tm
i � Tm�1

i

Δt
¼ α

2Δr2
Tm
i�1 � 2Tm

i þ Tm
iþ1 þ

Δr
2r

(Tm
iþ1 � Tm

i�1)

�

þTm�1
i�1 � 2Tm�1

i þ Tm�1
iþ1 þ Δr

2r
(Tm�1

iþ1 � Tm�1
i�1 )

�
:

(16)
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This can be rearranged to separate the two temporal steps: tm and tm�1. These solutions are very similar to the
1D planar case, with only one additional +α=4rΔr term in the spatial i þ 1 and i � 1 positions.

α

4rΔr
� α

2Δr2

� �
Tm
i�1 þ

1
Δt

þ α

Δr2

� �
Tm
i � α

4rΔr
þ α

2Δr2

� �
Tm
iþ1

¼ α

2Δr2
� α

4rΔr

� �
Tm
i�1 þ

1
Δt

� α

Δr2

� �
Tm
i þ α

2Δr2
þ α

4rΔr

� �
Tm
iþ1:

(17)

Which can be combined with the material interface factors and expressed more concisely in matrix form.

a0 b0 0 0 0 0 0 � � � 0 0
c1 a1 b1 0 0 0 0 � � � 0 0
0 c2 a2 b2 0 0 0 � � � 0 0
0 e3� c3� a3� b3� d3� 0 � � � 0 0
0 0 0 c4 a4 b4 0 � � � 0 0
0 0 0 0 c5 a5 b5 � � � 0 0
0 0 0 0 0 c6 a6 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 0 0 � � � cn�1 an�1 bn�1

0 0 0 0 0 0 � � � 0 cn an

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
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0

Tm
1

Tm
2

T �m
3

Tm
4

Tm
5

Tm
6

..

.

Tm
n�1

Tm
n

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

f0 �b0 0 0 0 0 0 � � � 0 0
�c1 f1 �b1 0 0 0 0 � � � 0 0
0 �c2 f2 �b2 0 0 0 � � � 0 0
0 �e3� �c3� f3� �b3� �d3� 0 � � � 0 0
0 0 0 �c4 f4 �b4 0 � � � 0 0
0 0 0 0 �c5 f5 �b5 � � � 0 0
0 0 0 0 0 �c6 f6 � � � 0 0
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. ..
. ..
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: (18)

where: � indicates a boundary interface and,

ai ¼ 1
Δt

þ α

Δr2
, bi ¼ � α

2Δr2
� α

4rΔr
, ci ¼ � α

2Δr2
� α

4rΔr
,

di ¼ ci ¼ 0, fi ¼ 1
Δt

� α

Δr2
, ai� ¼ fi� ¼ 1

Δt

bi� ¼ �4kiþ1αi þ 2(3ki þ kiþ1)αiþ1

12(ki þ kiþ1)Δr2
, ci� ¼ 2(ki þ 3kiþ1)αi � 4kiαiþ1

12(ki þ kiþ1)Δr2
,

di� ¼ kiþ1αi � (3ki þ 2kiþ1)αiþ1

12(ki þ kiþ1)Δr2
, ei� ¼ �(2ki þ 3kiþ1)αi þ kiαiþ1

12(ki þ kiþ1)Δr2
:

The modified curvature matrix now includes the location specific value r. Similar to the modified impulse
response, a multiple solution interpolation can be used, allowing parallel analysis of many differing locations on
the test article. The numerical solution can be applied to both convex and concave cases by simply setting the
respective values of r in the domain. Similar to the 1D planar case, the numerical Crank-Nicolson method offers
a solution beyond the semi-infinite duration if a back boundary condition is known. It additionally allows time
or temperature dependent material properties to be handled, offering an alternative to the limitations in the
impulse response. Preference should be given to the impulse method for post-processing if the required assump-
tions hold, due to the computational speed compared to a numerical approach.
The cylindrical solution provides a significant improvement to traditional 1D planar analysis, but still assumes

heat flux in the surface normal direction. Applications that produce high axial or circumferential temperature dis-
tributions are not well suited to this methodology. Similarly, geometries with regions of very small radii, such as
the trailing edge of turbine blades, do not satisfy the curvature semi-infinite criteria and cannot use this method.
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These cases are not considered radial-1D and should be modelled using 3D numerical techniques. When hand-
ling sharp geometric features such as edges or corners, Jiang et al. (2015) presented an efficient superposition
method to process the differing heat penetration directions. This method is effective at handling corner geometry
and is recommended where these features exist in the geometry. The discussed curvature corrected methods, the
impulse response and numerical Crank-Nicolson scheme, both require that the radius of curvature at each meas-
urement point is known. This curvature value must be extracted from the test geometry in order to use these
models, a robust method to calculate the point-wise surface curvature on complex freeform geometry is therefore
defined below.

Surface curvature calculation

3D CAD geometry is increasingly common in engineering practice. These design software allow complex free-
form surfaces to be constructed, often via spline or mesh specification. Surface or volume mesh definitions of
CAD models are widely used for numerical simulation or for direct manufacture via 3D printing. The rise of
additive manufacture has led to increasingly complex designs and neutral format surface topology files are rou-
tinely used to specify the surface data. The files segment the surface into the many faceted 2D shapes, defining
elements by vertex and facet connectivity. Stereolithography files (.STL) are among the most common and use
triangulation to capture surface curvature and can be exported from most CAD or meshing software.
Rusinkiewicz (2004) presented an algorithm to calculate the curvature at each vertex of an STL file. The algo-

rithm takes a vector of face and vertex data defined in the STL, parses the surface normals, then returns the prin-
cipal radii of curvature at each vertex. Using default settings, some CAD packages do not automatically output
unified normal files. The surface are often defined by how the user first constructed them, meaning that adjacent
surfaces may have normals that point in opposing directions. In such cases, the normals must first be unified so
that they are all aligned outwards from the geometry. Without this step, significant error is introduced to the
area weighted vertex normal calculation due to the opposing adjacent facet normals. Exporting an STL from a
meshing package e.g. ICEM, this unification step is usually applied by default. It is therefore recommended that
mesh exported STL files be used rather than those from native CAD.
Johnson (2011) provided MATLAB code, available from the Mathworks Exchange, to read standard ASCII or

binary STL files. Combining the read codes with the MATLAB implementation of Rusinkiewicz’s curvature
algorithm (Shabat and Fischer, 2015), the surfaces of any freeform CAD model can be evaluated easily. The pro-
posed methodology uses an equivalent cylindrical system, converting the freeform surface to a single curvature
value found by taking the mean of the vertex principal values. Figure 3 outlines the calculation process and
Figure 4 shows the resulting curvature map on an example linearised turbine Nozzle Guide Vane (NGV).

Radial 1D validation

The test article chosen uses a linearised turbine NGV. This geometry contains all features of interest: planar
faces, variable curvature, convex and concave surfaces, small radii and regions that violate the semi-infinite cri-
teria. The new radial procedure was validated by comparison to a 3D transient thermal analysis completed in
ANSYS. A constant flux boundary condition was applied to the solid domain only, which replicates the unit step
flux solutions discussed in Equations 9 and 10. The unstructured tetrahedral mesh, shown in Figure 5, used 21
inflation layers on all heated boundaries to accurately capture the thermal gradient and heat penetration normal
to the surface.
A uniform step in surface heat flux (104 W=m2) was applied to all main passage faces and the time-varying

temperature profile recorded for the Figure 5 monitor locations with differing curvature. These monitor points
offer a controlled replica of the surface temperatures that could be measured by a thin-film gauge during an aero-
thermal test. The simulation was run for 10 s, corresponding to the semi-infinite duration of the geometry
endwall, this final surface temperature profile is shown in Figure 6. A surface STL file was extracted and used to
calculate the effective curvature at each vertex, using the process defined in Figure 3. The radial 1D analytic tem-
peratures, Equations 9 and 10, were compared point-wise to the monitor results. The trailing edge region of the
geometry was removed from the analysis because it has a radius of curvature too low to be considered semi-
infinite. The simulation results confirm that the convex regions: the blade leading edge and suction surface, heat
up faster than a planar case and the concave regions: the pressure surface and blade root radii, heat up notably
slower. This is due to the convergent or divergent radial heat penetration, either concentrating or diffusing the
heating effect.
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Figures 7 and 8 compare the temperatures in the ANSYS simulation and the analytic solutions. The error
between the ANSYS surface monitor points and the analytic temperature is less than 1 K for the curvature cor-
rected solutions. Significantly higher errors are seen when using the planar 1D approximation. Only the blade
root radii, where the curvature is most extreme, is any significant error seen in the curvature solution. This is
caused by subsurface diffusion of heat from the adjacent regions, thereby reducing the accuracy of the 1D radial
assumption. Diffusion from the endwall and the blade reduces the effective volume into which the heat is dis-
persed. The surface thus heats up faster than the 1D cylindrical prediction. In these cases of extreme curvature,
it is required to modify the 1D cylindrical calculation. This should be done by applying an equivalent radius of
curvature in the formula rather than the true value. Several different equivalent radii were tested, in this applica-
tion, selecting 8.0 mm demonstrated the best surface temperature agreement with the numerical simulation.
The largest temperature difference in Figure 8 is seen immediately, at the start of the simulation, this behav-

iour was also seen in the previous multilayer 1D numerical analysis (Baker and Rosic, 2022). The numerical
error is largest when thermal gradients are first being established in the spatial simulation. The difference

Figure 3. Overview of the surface curvature calculation method from the initial CAD geometry through mesh face

and vertex normals to final mean principal radius of curvature, κm ¼ 1=2(κ1 þ κ2) Crane (2021).

Figure 4. Left: ICEM mesh of a 3D linearised turbine nozzle guide vane geometry used for STL definition of the

geometry. Right: the curvature map of the main blade surfaces after processing with Rusinkiewicz’s algorithm.
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between the ANSYS and analytic solutions then stabilises, showing a near constant offset in the latter part of the
simulation. This offset is most likely caused by the discrete domain in the ANSYS simulation, and the use of a
subsurface inflation layer temperatures to set the constant �kdT =dr heat flux boundary condition.
Figures 9 and 10 compare the heat flux in the ANSYS and analytic cases. The impulse response function has

been calculated for the 1D planar and 1D curvature solutions, using the mean principal radius of curvature as
the single curvature value in each location. The separate filters where then applied to the extracted ANSYS tem-
peratures in turn to evaluate the error in traditional planar impulse response assumptions. The high curvature
regions are the most effected, with large discrepancies for the root radius (11%) and leading edge (4%). The ana-
lysis also shows notable error (1.5%) across large parts of the concave blade surface. The error caused by the
planar assumption increases with time and curvature effects must be considered when operating long duration
tests. The curvature corrected solutions are notably more accurate, being uniformly within 1% once the initial
transients subside. The peak error is likely caused by initial numerical inaccuracies in the ANSYS simulation tem-
perature as the thermal gradient is first established. The impulse response convolution is affected by the full time
history, so these initial transients also affect the latter part of the analysis.
The point-wise validation simulates an aerothermal test with thin-film gauges, returning a low number of dis-

crete time-series surface temperature measurements in order to find the associated heat flux. For improved

Figure 5. Monitor point locations used in the ANSYS simulation and a section through the NGV ICEM mesh, showing

the inflation layers and tetrahedral core.

Figure 6. ANSYS solution of the main blade passage surface temperatures at the end of the 10 s simulation with

applied 104 W/m2 surface heat flux and initial temperature 20 °C.
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resolution, many experimentalists now turn to infra-red thermography, allowing them to better define the spatial
variation in surface heat transfer. In thin-film applications, the location of the measurement is known because
the gauge position was designed in the film manufacture. In thermal camera applications, the pixel location is
not known because the camera alignment is arbitrarily defined, or even moved on each test. To apply the curva-
ture correction methods of this paper to thermography, the camera and geometry must first be registered to
allow the correct curvature to be defined at each pixel. The following section introduces a thermal camera regis-
tration technique, enabling curvature correction of infra-red data.

Figure 7. Transient surface temperatures for the 1D analytic curvature solutions and monitor points in the 3D NGV

ANSYS simulation for unit step surface heat flux 104 W/m2. The analytic endwall case is equivalent to the 1D planar

assumption.

Figure 8. Comparison between the extracted ANSYS monitor point temperatures and the analytic solutions for both

the 1D planar and 1D curvature corrected cases.
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Thermal camera registration

Thermal imaging cameras are increasingly used alongside thin-film gauges as a non-invasive method to measure
surface temperature in an experimental environment. Thermography methods offer higher resolution thermal
data compared to film gauges but are limited by line of sight access, often obstructed if analysing shrouded com-
ponents. Methods for calibration and roughness compensation are described by Falsetti et al. (2021), Michaud
et al. (2020), and Condren et al. (2023). Many users choose to analyse thermal image data in the native 2D
image plane, thus neglecting curvature and other geometric effects. The curvature methods defined in this paper

Figure 9. Calculated surface heat flux when applying the impulse response to the extracted ANSYS monitor point

surface temperatures.

Figure 10. Comparison between the impulse response calculated surface heat flux and the 104 W/m2 ANSYS bound-

ary condition, showing the improved accuracy of the curvature corrected solutions.
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are equally applicable to infra-red data but require that the pixel location and CAD model be aligned, to define
the correct curvature at each pixel location. Presented below is a novel 3D thermography registration process that
allows these data to be paired, optionally also enabling the data to be applied as a 3D simulation boundary
condition.
Traditional IR post-process methods follow the same methodology as thin-film gauges, treating the data pixel-

wise and assuming the geometry surface to be planar one-dimensional. The 2D pixel video data is split to a time
series of nx � ny 1D temperature data sets then recombined to show a final result. Direct comparison between
runs, or with other measurement data, requires the user to manually register the image to account for misalign-
ment. Using computer vision techniques developed by the Oxford Robotics Institute, Hartley and Zisserman
(1999), the analysis can be improved by finding the imaging camera matrix described in Figure 11. Knowledge
of the CAD model and the perspective projection matrix can be used to automatically register the image to the
3D model. The mapped data is then automatically aligned for run-to-run comparison and can also use the
improved non-planar analysis, taking the methods discussed earlier in this paper.
A perspective projection camera is represented by a 3 × 4 matrix, that maps a real-world scene point to it’s cor-

responding 2D pixel location in the camera image plane. The homogeneous coordinates between two views can
be represented by the fundamental matrix P, which combines the camera calibration, rotation and translation
matrices. Computing P from a known scene and set of image locations can be reduced to a simple vector mini-
misation of two equations and labelling a minimum of six known locations in the image.
The homogeneous coordinates are given by normalising the image point, s, following the matrix multiplication

of P with S.

xi ¼ p11Xi þ p12Yi þ p13Zi þ p14
p31Xi þ p32Yi þ p33Zi þ p34

yi ¼ p21Xi þ p22Yi þ p23Zi þ p24
p31Xi þ p32Yi þ p33Zi þ p34

These can be rearranged to give linear equations in the matrix elements of P

xi( p11Xi þ p12Yi þ p13Zi þ p14) ¼ p31Xi þ p32Yi þ p33Zi þ p34

yi( p21Xi þ p22Yi þ p23Zi þ p24) ¼ p31Xi þ p32Yi þ p33Zi þ p34

Then concatenated to generate a 2n� 12 matrix, A, such that A p ¼ 0.

X Y Z 1 0 0 0 0 �xX �xY �xZ �x

0 0 0 0 X Y T 1 �yX �yY �yZ �y

� �
p ¼ 0

where p ¼ ( p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34)
T

This must be solved using the linear least squares solution that minimises jApj, taking the smallest eigenvector
from the singular value decomposition of A. This is achieved by defining several reference locations, where the

Figure 11. Definition of the perspective projection thermal camera matrix, P, that maps a real world scene point, S,

to the corresponding location on the image plane of the camera, s.
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global coordinate (X , Y , Z ) and corresponding pixel location (x, y) are known.

min
p

X
i

((xi, yi)� P(Xi, Yi, Zi))
2

The resulting minimisation gives the element values of P that best fit the data provided. Accuracy of the fit is
important and although the process can be solved with a minimum of six known locations, where possible the
maximum number of reference coordinates should be defined by the user to accurately bind the CAD model
and the image. Ideally the known reference points should cover the extremes of the region of interest to prevent
skew in the extrapolated areas. Well defined locations, for example cooling hole centres, make for ideal candidates
in reference point selection. The best fit components of the vector p allow the full matrix P to be constructed.
Mapping from the image plane to the higher order 3D space cannot be achieved via matrix inversion. Therefore,
the 3D data must instead be mapped to the image and sampled from the lower order space.
In order to sample the image, a surface point cloud of the 3D model is first extracted. This process is best

handled using the same STL file previously used to define the surface curvature. Use of the same file provides
consistency between the curvature calculation and camera registration processes. Each STL vertex is first mapped
to the image using the matrix P, then paired with the corresponding pixel. The resulting pairing gives a pixel ref-
erence for each location on the 3D surface thereby allowing the spatial coordinate, curvature and temperature
data to be efficiently linked. Following the point-pixel pairing the user has full knowledge of the 3D coordinate,
the principal surface curvature at this location, and the thermal time history from the FLIR video. The heat flux
can then be calculated, adjusting for the geometric effects where necessary, using either the modified impulse
response or radial Crank-Nicolson methods.
Mapping the thermal data to the CAD has additional benefits beyond pure curvature correction. Multiple

cameras can all be mapped to a single 3D model, allowing several data sets to be efficiently merged for full cover-
age of a vane surface using Blender (Blender Online Community, 2023) or ParaView (Ahrens et al., 2004).
Exact camera alignment is not critical, and positional variation between runs can automatically be corrected.
Static views can be created in the visualisation software, ensuring a consistent analysis across a test campaign.
Section and slice controls offer a higher level of control, better allowing the author to communicate the figure
intent. Figure 12 shows a schematic of an aerothermal linear cascade, typically instrumented with thin-film
gauges or infra-red thermal cameras. The 3D registration allowed the thermal data to clipped by surface, high-
lighting the endwall region of interest in the original NGV study by Shaikh (2020).

Figure 12. Schematic of an aerothermal linear cascade test facility, showing a typical 2D infra-red camera image of

the turbine NGV endwall and the resulting 3D mapped thermal data on the CAD geometry.
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Summary

Thermal analysis of most engineering components requires the evaluation of curved or freeform geometry. Planar
surface assumptions, commonly used to simplify the analysis, lead to significant error in the calculated heat flux.
Analytic solutions for a 1D cylindrical system have been investigated and applied in the case of aerothermal ana-
lysis of a turbine nozzle guide vane. Point-wise solutions were compared to a full 3D ANSYS numerical simula-
tion, proving the reliability and accuracy of the 1D radial method for thin-film heat transfer gauge
post-processing.
A novel Cartesian to Cylindrical impulse response was presented, allowing the upgraded methods from the

previous paper to be applied on complex freeform geometry. Additional consideration must be given to the semi-
infinite limit in cylindrical applications, with further limits on the impulse response test duration. Therefore, a
cylindrical upgrade was also discussed for the multilayer 1D Crank-Nicolson scheme, extending the range of suit-
ability to curvature correction.
The new methods necessitate that the point-wise surface curvature be known. A methodology was presented

to assess the curvature of complex freeform surfaces via standard stereolithography files and surface triangulation.
An extension for thermography image mapping was also introduced, allowing fast robust transfer of 2D thermal
camera data to a known 3D geometry. Combination of these techniques allows for full surface analysis, supple-
menting the point-wise curvature correction method for thin-film gauges.
The error caused by a 1D planar assumption was as high as 11% in some regions and in excess of 4% across

the NGV leading edge. In comparison, the curvature corrected method achieved heat flux calculation accuracy
within +1% across all blade surfaces. When using flexible thin-film heat transfer gauges or surface infra-red
thermography, it is essential that the effect of curvature be considered and the errors associated with the 1D
planar assumption removed. This paper defines the qualitative assessment of the 1D planar assumption and pro-
vides the necessary methods to handle the thermal analysis of complex freeform geometries.

Nomenclature

t(s) Time
s (−) Laplace domain variable
T (K) Time domain temperature (zero to initial conditions)
q(W=m2) Time domain heat flux
ϕ (−) Laplace domain temperature (zero to initial conditions)
ψ (−) Laplace domain heat flux
x (m) 1D planar spatial position, measured from the surface
r (m) 1D radial spatial position, measured from the surface
R (m) Boundary surface radius
α(m2=s) Material thermal diffusivity
k(W=mK) Material thermal conductivity
c(J=kgK) Material specific heat capacity
ρ(kg=m3) Material density
nx (−) Number of pixels in the horizontal direction
ny (−) Number of pixels in the vertical direction
NF (−) Normalised surface face normal
NV (−) Normalised surface vertex normal
FTq(s) Impulse response filter from surface temperature to surface heat flux
Fxr(s) Impulse response filter from cartesian to cylindrical coordinates
Frx(s) Impulse response filter from cylindrical to cartesian coordinates
OTI Oxford Thermofluids Institute
RMSE Root Mean Square Error
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