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Abstract

Modern aircraft engines need to meet ever more stringent requirements
that greatly increase the complexity of design, which strives for enhanced
performance, reduced operating costs, emissions and noise simultaneously.
The drive for performance leads to the development of thin, lightweight,
highly loaded fan and compressor blades which are increasingly more
prone to incur high, sustained vibratory stresses and aeroelastic problems
such as flutter. The current practice employs preliminary design tools for
flutter that are often based on empiricism or simplified analytical models,
requiring extensive use of computational fluid dynamics to verify aeroelastic
stability. As the industry moves to new designs, fast and accurate prediction
tools are needed. In this work, data-driven techniques are employed to
model the aeroelastic response of compressor blades. Machine learning has
been applied to a plethora of engineering problems, with particular success
in the field of turbulence modelling. However, conventional, black-box
data-driven methods based on simple input parameters require large data-
bases and are unable to generalise. In this work a combination of machine
learning techniques and reduced order models is proposed to address both
limitations at the same time. Previous knowledge of flutter is introduced in
the physics guided framework by formulating relevant, steady state input
features, and by injecting results from low-fidelity analytical models. The
models are tested on several unseen cascades and it is found that training
on even a single geometry yields accurate results. The models developed
here allow flutter prediction of fan and compressor flutter stability based on
the steady state flow only without a need for any CPU intensive unsteady
simulations. Hence, one can predict flutter stability of a given blade for
different mechanical properties (mode shape, frequency) at near zero
additional cost once the mean flow is known.

Introduction

Stall flutter occurs at part-speed regime, when airfoils operate at an inci-
dence higher than nominal (Dowell, 2015); it is normally associated
with high steady loading and low reduced frequency, for blades vibration
in the first flap (1F), sometimes referred to as flapwise bending (also
simply bending), or torsion (1T) mode (Srinivasan, 1997), in forward
travelling assembly modes, with positive low nodal diameters from 1 to
6 (Vahdati et al., 2001). Vahdati et al. (2011) state there are two types
of mechanisms that drive stall flutter: flow driven and acoustic driven.
For the flow driven mechanism, the inception of stall itself is not a

necessary condition, though the flow separation, and its interaction with
the suction side shock wave, is a key component for this type of instabil-
ity. On the other hand, the acoustic driven mechanism is driven by the
interaction of blade vibration with an upstream running wave caused by
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the blade vibration itself and the reflected wave from the intake. These conclusions are confirmed by a number
of previous and subsequent studies.
Isomura and Giles (1998) carried out a numerical study of a transonic fan and concluded that the source of

the instability is the shock wave/boundary layer interaction (SBLI) which primes the shock to oscillate, destabilis-
ing the blade. Vahdati et al. (2001) also performed a numerical study on a different fan blade, finding that actu-
ally the shock wave has a stabilising effect, while the opposite is true of the flow separation. It is therefore clear
that these flow features can both exacerbate and eradicate flutter, depending on geometry, flow field, modeshape
and frequency. Vahdati et al. (2011) carried out a numerical campaign to investigate the mechanism of wide-
chord fan flutter. They found that SBLI only is not sufficient to explain the loss of stability near stall, and that
this event is driven by acoustic waves propagating upstream being reflected at the intake highlight. They name
this loss of stability “flutter bite”. Vahdati and Cumpsty (2015) performed a numerical analysis of a
state-of-the-art fan blade, and concluded that flow separation, followed by radial migration of flow along the span
towards the casing, decreases aerodynamic damping. They found that aerodynamic damping reduces as the twist
component in the first flap mode increases, similar to what Panovsky and Kielb (1999) concluded for turbines.
Finally, they state that flutter occurs in the frequency and nodal diameter range where the generated acoustic
waves are cut-on upstream and cut-off downstream.
Building on this knowledge, Stapelfeldt and Vahdati (2019) presented two strategies to improve the flutter

margin of an unstable fan blade. The first addresses the flow driven mechanism by restaggering sections of the
blade, so that the radial pressure distribution is altered and the flow separation, with consequent radial flow
migration, is mitigated. The second strategy involves bleeding a small amount of fluid at different chord loca-
tions, in order to attenuate the upstream running pressure wave from trailing edge to leading edge, thus addres-
sing the acoustic driven mechanism. Finally, Rendu et al. (2019) presented a radial decomposition method of
the blade vibration to identify the flutter source of a fan blade. They show that the fan blade is rendered unstable
due to the highly destabilising contribution of the tip section of the blade, where the separation is most severe.
By dividing the blade into radial panels and vibrating them individually, they found that the instability though is
not caused by the tip itself, but rather is the vibration of lower panels that induces a destabilising unsteady pres-
sure on the tip.
The challenge of predicting compressor flutter lies in the complex interactions between aerodynamic flow,

structural mechanics and aeroacoustics which involves a large number of parameters. Analytical and computa-
tional methods for the prediction of compressor stall flutter have reached maturity, and development of new effi-
cient techniques seems to have come to a halt. Machine learning offers a large set of tools to explore and model
complicated phenomena with many variables involved, and it has proved successful in turbulence modelling,
bridging the gap between closure models and high fidelity methods in a number of applications.
Data-driven models for fluid mechanics applications, though, often share a fallacy: they are not reusable, as

predictions for the quantities of interest are only possible on training geometry or flow condition. The difficulties
with extrapolation from the training space are well known in machine learning and efforts have been made to
address these limitations with varying degrees of success. All the paradigms are based on introducing physical or
domain knowledge into the process, and a brief summary of such approaches is in order to justify the choices
made in this work.
Raissi et al. (2019) introduced the physics informed neural network (PINN) concept and applied it to solve a

number of problems, including two dimensional shedding around a cylinder. The PINN framework includes the
differential form of the governing equations, and relative boundary conditions, as loss terms inside the cost func-
tion so that predictions are consistent with the underlying physical problem, allowing the model to extrapolate to
unseen conditions. However, even in their state-of-the-art form, PINNs have only been applied to relatively
simple fluid flow problems (Jin et al., 2021; Oldenburg et al., 2022) and, more importantly, are still geometry
dependent, i.e. a model trained on one geometry cannot be used on another.
Physical understanding can be incorporated through domain knowledge as well. Manepalli et al. (2019) built

a model to predict snow accumulation on mountains and have incorporated certain domain knowledge via add-
itional penalty terms into the cost function, which penalise the model for predicting snow accumulation on
water surfaces. Daw et al. (2020) used an LSTM to predict lake water density and, as density can only increase
with depth, they constrained their model to only predict monotonic, increasing trends. Frey Marioni et al.
(2021) seeked to improve the modelling of the eddy viscosity term in the Boussinesq assumption, using neural
networks trained on DNS data, with the ultimate goal of improving flow field predictions in a turbomachinery
cooling flow. Rather than directly training on the complicated flow, they approximated it with a serpentine
passage and employed hierarchical agglomerative clustering to classify and divide flow regions. They showed
improved results by training only on regions without flow separation. Frey Marioni et al. (2022) built on their
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work to model wakes in an LPT cascade. Once again they showed that dividing the domain into simpler subdo-
mains and employing clustering improves the predictive capabilities of their ML models.
Particularly in turbulence modelling, physical knowledge is incorporated in the formulation of meaningful

input features. Ling and Templeton (2015) developed a number of classifiers to identify regions of high uncer-
tainty in RANS computations, and ensured that the models had good generalisation properties by providing
several features that are rotationally invariant and based on physical intuition. Their set of features has since been
adopted by other researchers (Wang et al., 2017; He et al., 2022).
Finally, Pawar et al. (2021) introduced the concept of physics guided machine learning (PGML) and applied

it to the prediction of lift coefficient on 4 and 5 digits NACA airfoils. The PGML framework in this case refers
to a fully connected neural network (FCNN) where, at some hidden layer, results from a reduced order model
(ROM) of the process are injected, thus augmenting the knowledge of the algorithm and “guiding” it to a phys-
ically consistent formulation. The same framework has been applied to modelling of dynamical systems with
good degree of success Robinson et al. (2022), and both studies show good generalisation properties. This frame-
work is appealing as it is computationally inexpensive, easily implemented, builds incrementally on previous,
physically sound knowledge and acts as a regulariser, avoiding excessive overfitting even in a small-data regime.
Considering the discussion above, we seek to build a machine learnt model using the PGML framework with

meaningful input and output features, based on physical understanding of stall flutter. Each component of the
PGML model developed in this work will now be discussed.

Methodology

Flow solver

In this study, the data necessary to build our PGML model are obtained solely with computational methods.
The CFD solver used in this work, LUFT, is developed by Dr. Paul Petrie-Repar from RPMTurbo. The
steady-state solver employs a cell-centered finite volume scheme to solve the 3D RANS equations, on a computa-
tional grid composed exclusively of hexahedral elements. The fluxes are calculated by means of an upwind
AUSM scheme and, at cell interfaces, the flow is reconstructed with a MUSCL interpolation coupled with the
van Albada limiter. Finally, a pseudo-time stepping with residual smoothing is applied to march the solution to
convergence.
The unsteady flow solver is linearised. The time dependent flow equations are cast in the frequency domain,

so that the flow is assumed to be harmonically oscillating about its steady-state

U ¼ �U þ <{ ~Ue jωt } (1)

U is the unsteady flow solution, �U is the steady-state solution and ~U is an unknown complex number corre-
sponding to the small amplitude flow perturbation. The linear system of equations arising from linearisation is
solved with a preconditioned GMRES scheme. Throughout the study, a linearised Spalart-Allmaras turbulence
model without wall functions is used and 2D non-reflecting boundary conditions are applied. Further informa-
tion and validation against other established codes can be found in (Petrie-Repar et al., 2006; Frey et al., 2019).

Test case

The test case selected for this study is the Standard Configuration 10 (Frannson and Verdon, 1991), a 2D com-
pressor cascade which consists of modified, cambered NACA0006 airfoils. The geometry is fixed, with a chord
length, c, of 0:1 meters, a solidity s of 1:0 and a stagger angle ξ of 45�. In this study, the total inlet pressure and
temperature are fixed at 101:3 KPa and 300 K respectively and, at design point, the cascade operates with inlet
Mach number M1 ¼ 0:7 and inflow angle α1 ¼ 55�. Throughout the rest of the paper, we will refer to incidence
of flow onto the blade as β1 ¼ α1 � 55�: positive values indicate incidence higher than nominal, therefore
moving the cascade closer to stall.
The grid used for both steady and unsteady computations is quasi-2D, i.e. one cell layer along the span, it has

been obtained through a convergence study and it consists of 42, 268 nodes with a yþ , 1 at the blade surface.
Total pressure, temperature and flow angle are used as inlet boundary conditions, whereas static pressure is
imposed at the domain outlet. The boundaries are located 1:5 chord lengths away from leading and trailing
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edge. The computational domain is a single passage; periodic and phase lagged boundary conditions are applied
for steady and unsteady computations respectively.

Machine learning algorithm

The backbone of the PGML model is a fully connected neural network. The choice of an FCNN is motivated
by its layered structure, which allows full control over the location where the low-fidelity results are injected. A
schematic representation of the FCNN is given in Figure 1.
A number of hyperparameters need to be specified now to build the model, such as number of hidden layers,

number of neurons per hidden layer, regularisation coefficient, bias value, number of iterations, minibatch and
step size, activation function and location of low-fidelity results injection. In this case, a full factorial exploration
is unfeasible to say the least, therefore the standard practice of random search is employed. A set number of
FCNNs will be trained with hyperparameters chosen randomly within pre-established ranges; the loss metrics are
evaluated and the best models are then selected for a posteriori assessment.
In this work, we aim for small, simple FCNN architectures, therefore a large number of hyperparameters can

be tested in parallel, even on conventional CPUs. The optimisation algorithm is Adam (Kingma and Ba, 2014),
and the cost function is the standard mean squared error (MSE). The model is implemented in PYTHON with
the TENSORFLOW (Abadi et al., 2015) library.

Reduced order model

The reduced order model we are seeking must:

- be efficient, thus adding minimum computational effort
- take into account some, if not all, geometrical features of the cascade
- model compressibility effects, due to the Mach number range of interest for stall flutter
- be validated

Unlike the machine learning algorithm, there are not many reduced order models for the aeroelastic response of
turbomachinery cascade. The most viable option, fitting our requirements, is the semi-analytical model
LINSUB, based on a theory by Whitehead (1972) for linearised, subsonic, inviscid, unsteady flow through an
infinite cascade of two-dimensional flat plates. The theory ignores flow deflection, thickness and camber effects,
thus ignoring steady blade loading. LINSUB calculates a matrix of unsteady load coefficients induced by simple
rigid body modes, plunging normal to the chord and pitching about the leading edge.

Output formulation

The same coefficients computed by LINSUB can be calculated using CFD. Two computations are necessary to
calculate the unsteady pressures induced by each mode, which are consequently integrated along the blade to
find forces and moments. Equation (2) shows the definition of two of the coefficients, for sake of brevity. The
superscript refers to the mode causing the unsteady loads, while the subscript refers to the modal force, thus, L
for lift when projecting the loads onto the plunge mode and M for moment, which is the modal force for a pure

Figure 1. A schematic representation of a PGML network with two hidden layers and one-dimensional output.
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pitch.

Ch
L ¼ 1

S( p0 � p1)�h

ð
S
p̂gthn �ΦhdS; Cα

M ¼ 1
cS( p0 � p1)�α

ð
S
(r� p̂αn) �ΦαdS; C ¼ Ch

L Cα
L

Ch
M Cα

M

� �
(2)

S is the blade surface area, c its chord, (p0–p1) is the difference between inlet total and static pressure equals to
the dynamic head, Φ is the modeshape and �h, �α the modal amplitudes, n is the blade surface unit vector, p̂ the
complex unsteady pressure and, finally, r is the position vector from the pitching axis to the blade.
The interest of this work lies in stall flutter which, mostly, affects blades vibrating in first flap mode. A flap

mode though is a rotation about a generic axis located at x chords from the leading edge, therefore, one can
convert the matrix C into the new reference frame centered at x

H ¼ 2
1 0
x 1

� �
Ch
L Cα

L
Ch
M Cα

M

� �
1 x
0 1

� �
(3)

Finally, the obtained unsteady moment coefficient can be translated into an aerodynamic damping coefficient
ζ (see Eq. 15 in Frannson and Verdon (1991)), resulting in

ζ ¼ �={Cα
M }þ (={Ch

M }þ={Cα
L })x �={Ch

L }x
2 ¼ ζαM þ ζhM þ ζαL þ ζhL (4)

where, again, the superscript refers to the mode causing the unsteady loads, while the subscript refers to the
induced force.
The quantity of interest (QoI) of the PGML model will therefore be the matrix C, from which plunge, pitch

and any flap mode stability can be evaluated.

Input formulation

The purpose of the proposed model is to predict unsteady force coefficients for different geometries. The most
basic avenue to achieve this goal requires an expansion of the training database through the inclusion of several
different geometries, so that the surrogate model can then interpolate to produce predictions on cases that fall
within the training space. This approach is appealing as, once the surrogate model is trained, it bypasses the
CFD solver completely and only boundary conditions and geometry are needed to obtain the set of unsteady
forces. Unfortunately, this approach is also unfeasible as the number of training samples needed would be
extremely large, moreover, even if one were to simulate a large number of cases, the definition of these geometries
would most likely need to be parametrised through an autoencoder, which is a task with pitfalls in itself
(Gambitta et al., 2022; Yonekura et al., 2022). Therefore, the approach followed in this work relies on a different
strategy.
In order to predict unsteady forces on the blade, the surrogate model needs information about the geometry

and flow variables. If the geometry is to be explicitly passed as an input, clearly several cascades need to be used
to build a training set. On the other hand, the flow features, and their relationship, form a set of dependent vari-
ables which is defined by the boundary conditions and geometry themselves. It is thus argued that, rather than
passing the geometry explicitly, the PGML model can build a functional mapping for the QoI from a set of
unsteady boundary conditions and steady state features, which already encode the geometry in their mutual
dependence. Effectively, the steady CFD solver acts as an encoder to translate the geometry into an input the
PGML can work with. This approach is somewhat similar to that of Ling and Templeton (2015). The drawback
of this solution is that a run of steady state solver is needed to calculate the input features at prediction time.
This is deemed an acceptable price to pay, as the aerodynamic damping for different modeshapes, frequencies
and interblade phase angles, can be calculated at no extra cost.
The careful choice of input features is crucial to develop a model that can generalise. The features must not

only be relevant for stall flutter, but must also carry information about the domain, without harming the learn-
ing process: too many input features will introduce information that might be irrelevant and add dimensions to
the data; on the other hand, if the number of inputs is too low, the model will not be able to capture a change
in geometry or flow conditions and will thus be unable to generalise.
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Steady state features

A number of constraints are established to reduce the space of possible features, which would otherwise grow too
large. The features must be continuous and relevant for both subsonic and transonic flow, thus no binary vari-
ables, e.g. shock/no shock or pressure jump at shock front. They must also be relevant for both attached and
separated flow, which denies the inclusion of quantities such as size of separation. Finally, these features must be
either non-dimensional or rescaled by a relevant quantity. The last point will be explained more carefully as we
list them.
It is stressed that the absence of quantities relating “directly” to the presence of shocks and separation does not

imply that these flow features are unimportant, but simply that their effect can be represented by other flow fea-
tures. The following features have been chosen based on physical intuition.

Inlet Mach number
The inlet Mach number is one of the most important non-dimensional groups in turbomachinery and it is also
an input to LINSUB.

Chordwise center of pressure
The steady pressure distribution on the blade is important to determine stability, thus a parameter to capture
loading is needed. Force and moment coefficients give a good indication of loading, but vary widely between
geometries and cannot be used for generalisation unless normalised by some reference value which is hard to
define. The same applies to pressure ratio, pressure rise and flow coefficients, and similar parameters. Wong
(1997) and Kiss (2021) both showed strong correlation between aerodynamic damping and location of chordwise
center of pressure xcp. The parameter carries a lot of information regarding the state of the pressure field around
the blade and for a typical compressor section, unless the flow is severely stalled or choked, it is bounded
between 0 and 1, corresponding to leading and trailing edge respectively.

Blockage near trailing edge
Blockage is the reduction in flow area caused by local velocity deficit which is a result of the displacement thick-
ness associated with boundary layers. It is a crucial variable for compressor design and a great indicator of either
increasing incidence onto the blades or flow separation due to a strong shock wave. The blockage definition used
in this work is adapted from Khalid et al. (1999) and is briefly discussed here. First, the authors define a main
flow direction to select a velocity component, um, to use in blockage definition. As we are interested in the block-
age due to the boundary layers in the bladed passage, the main flow direction is the one aligned with the stagger
angle ξ. Second, they identify the edge of the velocity deficit region by recognising that near solid walls, the gra-
dients are stronger than in the core flow. The edge is defined as the region where the magnitude of the gradient
r
!
ρum, normalised by inlet density, inlet axial velocity and blade chord, is equals to a target value. The target is

set to 3 as in the original paper. As our test case is two-dimensional, the expression for blockage area becomes a
blockage width δ defined as

δ ¼
ð

1� ρum
ρeUe

� �
� dl (5)

where dl refers to integration along a line normal to the blade surface, while ρe and Ue are the values of density
and velocity at the blockage edge.
The blockage can only grow on the blade, therefore it is calculated near the trailing edge where it reaches its

maximum, both for suction and pressure side, because the relationship between the two changes depending on
the operating conditions. In subsonic flow, the blockage on suction and pressure side are, respectively, directly
and inversely proportional to incidence; in transonic flow this is not necessarily the case as, even with low inci-
dence, the shock wave forming on the suction side will grow the blockage while the pressure side is effectively
unchanged (assuming the flow is not choked). This feature is bounded by the passage width but, at the same
time, the boundary layer growth is also a function of the chord length. Moreover, in the limiting case of null
mass flow rate, there should not be any blockage at all. It is found that the best approach to account for these
observations is to rescale the blockage size by the solidity s, i.e. chord to pitch ratio.

Wake momentum thickness
A further indicator of the state of boundary layers and losses of the cascade is the wake momentum thickness.
This quantity, similar to blockage, is proportional to incidence and inlet Mach number. Moreover, it correlates
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to the diffusion factor umax=u (Lieblein and Roudebush, 1956), which gives an indication of fluid velocities on
the suction side, but unlike the diffusion factor, the same considerations put forth regarding blockage size can be
applied here, therefore this feature can also be rescaled by the solidity. The definition of momentum thickness
used here is found in Dixon and Hall (2013)

Θ ¼
ð
u
U

1� u
U

� �
dy (6)

where U and u are velocity outside and inside the wake region respectively, and dy indicates integration in the
pitchwise direction.

Stagnation pressure loss coefficient
Losses in cascades are commonly expressed in terms of stagnation loss coefficient.

�ω ¼ p01 � p02
p01 � p1

(7)

where 1 and 2 indicate inlet and outlet. This quantity is easy to calculate and correlates well with other loss
parameters.

Unsteady features

The unsteady features are the interblade phase angle σ and the blade reduced frequency k. Arguably, these quan-
tities could be better represented by their ratio with cut-off frequencies (for an exhaustive explanation of acoustic
modes in turbomachinery ducts see Tyler and Sofrin (1962)), but for any given combination of frequency and
interblade phase angle, there are multiple cut-off conditions. It is thus unclear which one would be the most
appropriate to choose for normalisation and for this reason, the values of σ and k are used directly. The period-
icity with interblade phase angle is enforced by simply duplicating training samples on either side of the +180�

range.
Finally, one would argue that a feature able to capture the change in passage shape is missing. Although this is

true, we can make two considerations. First, the change in passage shape is partially modelled in LINSUB.
Second, and more importantly, this effect becomes highly relevant for torsional modes at high interblade phase
angle, which is a condition that very rarely exhibits stall flutter.

Training data

The Latin Hypercube sampling method (McKay et al., 1979) is applied to generate five independent databases
of input parameters. The databases have size 128, 256, 512, 1024, 2048, and are referred to as db1 to db5.
Each input sample corresponds to a set of computations, one steady and two unsteady, of the time-linearised
solver on the SC10 geometry. The range for inlet Mach number is chosen to be symmetric about the nominal
value of 0:7, to study both subsonic flow, where no shock appears, and transonic flow conditions, where a shock
is present on the suction side. M1, thus, changes between 0:5, anything lower is discarded as excessively low
speed, and 0:9, so that the shock stays on the suction side and does not move too far upstream. The incidence
of incoming flow onto the blade is varied between 0� and 6�, which is the largest value before inception of stall
for all the Mach numbers studied in this work. The interblade phase angle σ ranges from �180� to 180�, while
the reduced frequency k ranges from 0:5 to 1:0. This choice of intervals for the steady state variables is based on
the literature shown in the previous sections. The unsteady computations are performed with two basic mode-
shapes: a plunge orthogonal to the chord line and a pitch about the leading edge. The force coefficients are
found integrating the dot product of modeshape and unsteady pressures as shown in Equation (2).

Validation data

The validation set employed to evaluate the generalisation capabilities of the PGML model is composed of 25
different cascades, each obtained by varying one parameter of the original Standard Configuration 10 (7 cases
with different airfoil thickness, 4 airfoil cambers, 5 stagger angles and 9 solidity values). For each cascade, a total
of 35 steady state computations is run (7 inlet flow angles and 5 inlet Mach numbers). For each steady state
flow, a total of 444 time-linearised computations is run (2 modeshapes, 6 reduced frequency values, 37 inter-
blade phase angles). Therefore, 388, 500 time-linearised computations are needed to compute the validation set.
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Results

Model selection

The process of selecting the best hyperparameter setting is composed of several stages.
First, the goal of this process is to have four PGML networks, each predicting one of the quantities of interest,

i.e. the components of the unsteady force matrix C. This is to alleviate the burden of each machine learnt model
and produce better results. Also, this is justified as mathematically these four coefficient values are decoupled.
Second, the learning dataset is composed only of the five SC10 databases, while the large dataset of geometry

variations is held out as a validation set. This means that no knowledge of change in geometry is introduced in
the learning process, neither explicitly, i.e. using the data for training, nor implicitly, i.e. by finding the hyper-
parameters that best fit the validation set. The choice of such an approach is the true test of our hypothesis and
of the quality of the input features.
Third, as per standard machine learning practice, a cross validation procedure is needed to find the hyperpara-

meters. In this work, the common K -fold cross validation is used: the learning dataset is randomly partitioned in
to K groups called folds, the PGML is trained on K � 1 folds and the left out fold is used as test data. The
number of folds is fixed at K ¼ 5, and as the gradient descent algorithm can fall into local optima depending on
weights initialisation and data partition, the computations are repeated 16 times for each network. The output is
averaged to generate a prediction, and the parameter setting yielding the best error metric is used to train the
final PGML model, using all of the learning dataset. The error, or rather, the performance metric used here is
the coefficient of determination R2

R2(q, q̂) ¼ 1�
Pm�1

i¼0 (qi � q̂i)
2

Pm�1
i¼0 (qi � �q)2

(8)

where q, �q, q̂ are the QoI, its mean across samples and surrogate model prediction respectively, and m is the
number of samples. In this case, “best” means the greatest R2 value. The maximum attainable value of the coeffi-
cient is R2 ¼ 1, which corresponds to a perfect model and null prediction error over all samples. Other error or
performance metrics can be utilised with no change to the outcome.
Finally, as the space of possible settings is too large to be explored with a full factorial, the cross validation is

run using a sample of 1024 hyperparameter combinations generated at random, by drawing from uniform distri-
butions within the specified ranges. The cross-validation R2 for the four QoIs are given in Table 1.
Figure 2a shows the R2 values for the four QoIs. The performance on the training set exhibits negligible vari-

ation across the QoIs, while the PGML framework improves the prediction capabilities of the simple FCNN
ever so slightly; on the other hand, the PGML performance on the validation set varies noticeably, ranging from
a maximum of R2 � 0:92 when predicting the plunge lift coefficient, to a minimum of R2 � 0:75 associated to
the predictions of pitch moment coefficient. Furthermore, PGML performs consistently better than the FCNN,
while LINSUB predicts poorly across all samples.
The error distribution of PGML on the validation set can be visualised as a probability density function

(PDF). The relative error ϵ is defined as

ϵ(q, q̂) ¼ jq � q̂j
�q

(9)

Figure 2b reports the relative error distribution for each quantity of interest. For most of the validation
samples, the relative errors are within 7:5%. Comparing across the QoIs, the PGML shows a generally higher
accuracy in predicting plunge induced coefficients over their pitch induced counterparts, and also PGML is able
to better predict unsteady lift over unsteady moments. This result is reassuring for our purposes because, as

Table 1. Cross validation R2 values.

Ch
L Ch

M Cα
L Cα

M

R2 0:952 0:95 0:945 0:947
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mentioned earlier, Equation (4) shows that for flap modes, i.e. x � 1, the contribution of plunge induced lift to
stability is dominant. These observations are in agreement with the presented R2 values. The loss in prediction
accuracy for pitch induced coefficients was anticipated in the previous section, and it is attributable to the
absence of input features pertaining to the change in passage shape. As this effect is particularly relevant in pitch
dominated modes, the predictions of the PGML model, although enhanced by LINSUB, result in greater errors,
especially at high σ. The interblade phase angle argument is easily confirmed by plotting the QoI values from
CFD against the prediction from PGML. Figure 3 illustrates such a plot for for plunge induced lift and pitch
induced moment, which are the best and worst predicted QoIs, respectively. The contour is coloured according
to the absolute value of interblade phase angle and it clearly shows that, while the model performs really well at
low interblade phase angles, as jσj is increased, the agreement between CFD and PGML degrades.
Although imperfect, the presented model fits its intended purpose: stall flutter occurs largely in the regimes where

PGML performs well, i.e. flap modes, which are mostly plunge dominated, and at low interblade phase angles.

Prediction on unseen geometries

In this section, the selected machine learnt models will be examined more in depth and compared against the
validation set results obtained with CFD. The validation set is composed of all the computations performed on
the cascades obtained by varying the SC10 parameters one at a time. It is reiterated that, on the other hand, the
training set is constituted of only SC10 computations, therefore all of the following results constitute an extrapo-
lation in terms of geometry.
The plots in Figure 4 show the behaviour of plunge induced lift and pitch induced moment with increasing

solidity. The steady state conditions, M1 ¼ 0:85, β1 ¼ 3�, are the same for all panels. The interblade phase
angle is also kept constant at σ ¼ 20�. From left to right, the reduced frequency is respectively k ¼ 0:5, k ¼ 0:7,
k ¼ 1:0. At low interblade phase angle, as the reduced frequency is increased, the CFD and LINSUB results
shift towards more negative coefficient values, corresponding to an increasingly stable configuration. This behav-
iour is replicated by both PGML and FCNN.
The FCNN produces results that are generally close to CFD and it is able to reproduce the behaviour with

increasing solidity at low frequencies, although the agreement seems to degrade both as the frequency is increased

Figure 2. Performance of PGML, FCNN and LINSUB: (a) R2 values on training ( ) and validation ( ) sets; (b) nor-

malised distribution of PGML relative error on validation set.

Figure 3. Scatter plot of normalised QoI form validation set. The CFD and PGML predictions are on horizontal and

vertical axis respectively. The QoIs are reported on each panel.
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and as the cascade operates at a solidity increasingly further from s ¼ 1:0. This is a foreseeable consequence of
extrapolating further from the training set, i.e. a cascade with solidity s ¼ 1:0.
On the other hand, the PGML model follows closely the FCNN at lower frequencies, but its predictions are

visibly rectified by LINSUB at higher k, to the point that, in panels (c) and (f ), the PGML predictions become
parallel to those by LINSUB and overlap with the CFD almost perfectly, while the FCNN predicts a nearly con-
stant behaviour. Furthermore, the slope of CFD and LINSUB predictions are nearly identical throughout the fre-
quency range and are only offset by a value.
We now investigate a case with larger interblade phase angle. The plots in Figure 5 show the behaviour of

plunge induced lift and pitch induced moment with increasing solidity. The steady state conditions, M1 ¼ 0:85,

Figure 4. Predictions of plunge lift and pitch moment coefficients from CFD, PGML, FCNN and LINSUB against solid-

ity. The steady state conditions are constant at M1 ¼ 0:85 and β1 ¼ 3�. The panels, from left to right, are run with

reduced frequency k ¼ 0:5, k ¼ 0:7, k ¼ 1:0, respectively, while the interblade phase angle is constant at σ ¼ 20�.

Figure 5. Predictions of plunge lift and pitch moment coefficients from CFD, PGML, FCNN and LINSUB against solid-

ity. The steady state conditions are constant at M1 ¼ 0:85 and β1 ¼ 3�. The panels, from left to right, are run with

reduced frequency k ¼ 0:5, k ¼ 0:7, k ¼ 1:0, respectively, while the interblade phase angle is constant at σ ¼ 150�.
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σ ¼ 150�, are the same for all panels. The interblade phase angle is kept constant at σ ¼ 150�. From left to
right, the reduced frequency is respectively k ¼ 0:5, k ¼ 0:7, k ¼ 1:0. Unlike the low interblade phase angle
case, the results from CFD and LINSUB are not simply offset by a factor, but behave rather differently with
solidity.
With k ¼ 0:5 (panels (a), (d)), the upstream pressure field changes from cut-on to cut-off at s � 0:95,

causing a spike in aerodynamic forcing, followed by a dip. After reaching a minimum, the trend is inverted and
the coefficient value moves closer to zero. This non-monotonic trend is not well predicted by LINSUB, because
it does not take into account the inflow angle and flow turning, hence predicting cut-off frequency at a different
solidity value. PGML and FCNN approximate the shape of the CFD curve, though with some discrepancy on
the predicted value. As the frequency increases, PGML and FCNN predictions improve and nearly overlap with
CFD. LINSUB produces results that move closer to CFD, but ultimately predicts a different trend with solidity.
The plots in Figures 6 and 7 show the behaviour of plunge induced lift and pitch induced moment with

increasing solidity with σ ¼ 20� and σ ¼ 150�, respectively. Similarly to the case with increasing solidity, the
PGML outperforms the naive FCNN and closely follows the results from CFD. Especially for the case of interest
of low interblade phase angle, PGML and CFD nearly overlap for all investigated frequencies.
Finally, a comparison of results obtained with a sweep in camber is shown in Figure 8. The steady and

unsteady conditions are the same as the ones shown previously. Once again, the PGML is able to correctly
predict the QoIs value across a range of conditions. We can appreciate only a small difference between the results
from FCNN and PGML, and that is because the latter has learnt that LINSUB does not provide any significant
guidance as the camber, and thus the loading, changes.
The input from LINSUB does not help capturing the change in camber, this makes intuitive sense as

LINSUB is a flat plate model, though we can see that its effect is constant throughout the range, “pulling” the
PGML predictions towards more negative values compared to the FCNN. The following conclusions can be
drawn:

- the PGML relies largely on the physics guidance to produce predictions when a change of solidity or stagger
angle is taking place, as their effect is modelled in LINSUB; on the other hand, the FCNN has to capture
these effects solely through the steady state features provided, hence producing poorer results;

- the extent to which PGML relies on LINSUB depends on the combination of interblade phase angle and
reduced frequency;

Figure 6. Predictions of plunge lift and pitch moment coefficients from CFD, PGML, FCNN and LINSUB against

stagger angle. The steady state conditions are constant at M1 ¼ 0:85 and β1 ¼ 3�. The panels, from left to right, are

run with reduced frequency k ¼ 0:5, k ¼ 0:7, k ¼ 1:0, respectively, while the interblade phase angle is constant at

σ ¼ 20�.
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- the physics input has little contribution when a change in airfoil shape is taking place, as this effect is not mod-
elled in LINSUB; nevertheless, it still provides useful guidance by rectifying the predictions, e.g. in Figure 8f
we can see the PGML output being “corrected” towards more negative values.

Figure 7. Predictions of plunge lift and pitch moment coefficients from CFD, PGML, FCNN and LINSUB against

stagger angle. The steady state conditions are constant at M1 ¼ 0:85 and β1 ¼ 3�. The panels, from left to right, are

run with reduced frequency k ¼ 0:5, k ¼ 0:7, k ¼ 1:0, respectively, while the interblade phase angle is constant at

σ ¼ 150�.

Figure 8. Predictions of plunge lift and pitch moment coefficients from CFD, PGML, FCNN and LINSUB against

camber. The steady state conditions are constant at M1 ¼ 0:85 and β1 ¼ 3�. The panels, from left to right, are run

with reduced frequency k ¼ 0:5, k ¼ 0:7, k ¼ 1:0, respectively, while the interblade phase angle is constant at

σ ¼ 20�.
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Conclusions and future work

In this work, a physics guided neural network model has been presented.
The model leverages the PGML framework which is comprised of a fully connected neural network in which

predictions of the QoIs from a reduced order model (ROM) are injected at some hidden layer. The ROM
employed in this work is LINSUB, a semi-analytical method which models the aeroelastic response of a cascade of
unloaded blades, accounting for important parameters such as cascade geometry and flow compressibility. The
required data for model training was generated using CFD. The input features to the PGML are steady state quan-
tities that are relevant for stall flutter and carry information regarding the cascade and blade geometry as well as
blade loading. The unsteady input features are interblade phase angle and reduced frequency. The QoIs are four
unsteady quantities, two lift and two moment coefficients, induced by two basic modeshapes: a plunge orthogonal
to the chord line, and a pitch about the leading edge. In this way, the QoIs can be combined to predict aero-
dynamic damping for any flapwise bending modeshape. The current implementation of the PGML thus requires a
steady CFD computation at prediction time to obtain the input features. Such an approach allows us to train the
model on a reduced number of training samples as there is no need to pass the geometry directly as an input
feature, which would require an unfeasible number of computations to build the training database.
The PGML is first trained with SC10 data only. The hyperpameters are tuned with a random search approach

and the best model is selected with a 5-fold cross validation which, again, only employs SC10 data.
Consequently, the model is tested on a large database of cascades and it is found that the PGML can predict the
QoIs with good degree of accuracy, especially in the low interblade phase angle region, which is of most interest
for stall flutter. It is also found that the prediction accuracy for plunge induced coefficients is higher than the
pitch induced ones, due to the lack of an input feature pertaining to change in passage shape.
The authors are currently working on testing the model on cascade geometries resembling a tip section of a fan

blade.

Appendix - PGML hyperparameters
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Table 2. Hyperparameters of PGML networks.

Hyperparameter Ch
L Ch

M Cα
L Cα

M

Activation g(z) ReLU ReLU Swish Swish

Batch Size jBj 512 256 256 96

Epochs 5,000 4,000 4,000 5,000

Initialisation He-N Xavier-U He-N Xavier-U

Hidden Layers L 5 5 6 5

Learning Rate η 0:003 0:006 0:002 0:004

Neurons per layer NL 9 6 8 8

Physics Layer 4 1 5 4

Regularisation log10(λ). −4 −4 −5 −5

Scaler Standard Standard Min-Max Standard
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