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Abstract

Aeroengine health assessment plays a pivotal role in ensuring flight safety
and reliability. Traditionally, this process involves diagnosing the perform-
ance of the aeroengine gas path. However, owing to the intricacies of
operating conditions, non-linear performance, and the interplay of gas path
performance fault characteristics, determining the aeroengine health condi-
tion directly from engine monitoring information poses a significant chal-
lenge, particularly in cases of insufficient sensor data. To address these
challenges, a novel digital twin method for aeroengine performance
diagnosis has been proposed. This method integrates data-driven and
performance models, employing a low-rank multimodal fusion approach.
By digitizing the physical system or process through mathematical models
and simulation technology, this approach presents distinct advantages
compared to previous methods relying solely on models or data. At the
aeroengine component level, an adaptive model was implemented, and the
data-driven model was constructed using flight data. Gas path fault classifi-
cation employed support vector machines. The engine digital twin was
established through low-order multimodal fusion. Results indicate that the
proposed method attains excellent diagnostic accuracy under both steady
and transient conditions. It can be harnessed to enhance engine perform-
ance monitoring and evaluation, thereby improving the reliability, availability,
and efficiency of the engine.

Introduction

Aeroengines, acting as the primary power source for aircraft, undergo
rigorous operating conditions throughout their lifespan, resulting in
the degradation of gas path performance (Shuang et al., 2021 &
Chen et al., 2021). This deterioration can give rise to gas path failures,
and in extreme cases, lead to system collapse. Consequently, the creation
of precise and dependable aeroengine performance diagnosis systems is
imperative to guarantee flight safety, reliability, and the extension of
engine service life (Xu et al., 2022, Sun et al., 2020). Presently, the
majority of engine performance diagnosis systems are grounded in the
theoretical framework of gas path analysis (GPA), utilizing two primary
approaches: model-based and data-driven methods.
The model-based approach focuses on establishing a precise mechan-

ism model for quantitatively analyzing the variations in the engine’s per-
formance (Urban, 1973). Several researchers, including Gulati et al.
(2000) and Aretakis et al. (2003), have conducted engine performance
evaluation and fault diagnosis by deriving multiple fault equations from
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diverse steady-state points. Zedda and Singh (2003) have addressed the diagnosis of sensor bias in sexual energy
and employed a two-level combination search of sensor and gas path components to isolate these components
from each other. Song et al. (2015) have developed an engine performance prediction model and validated its
accuracy in predicting the engine gas path performance status. Kim et al. (2020) have proposed a mechanism
model method to predict engine performance changes in both steady-state and transient modes. However, to
enhance the accuracy of the mechanism model, parameter modifications are necessary. Typically, steady-state
working points are extracted from a significant amount of experimental and operational data for verification.
Nevertheless, this process can be relatively complex and may result in information loss (Tsoutsanis et al., 2014).
The data-driven approach relies on utilizing existing information, experience, and data to quantitatively

analyze the engine’s health without the need for complex mechanism models (Wang and Zhao, 2023). To
enhance detection quality and reduce setup time, Viharos and Kis (2015) proposed a fuzzy logic method that
combines neural network learning with fuzzy logic and ideal solution similarity ranking technology based on
user rules. Pu et al. (2013) investigated a directed graph Bayesian belief network that employs probabilistic rea-
soning and expert systems for knowledge representation and reasoning, demonstrating good performance in
handling uncertain information. Kumar et al. (2018) introduced a method that combines fuzzy logic with
support vector machines, which proves valuable not only for engine performance analysis and fault diagnosis but
also for estimating the remaining life of engine components. Fentaye et al. (2019) utilized neural networks and
support vector machines to quantify and classify engine component performance degradation under standard
white noise. Lu et al. (2019) proposed a decentralized DKELM algorithm that significantly improves real-time
performance while maintaining classification accuracy. Lu et al. (2020) presented the GPKELM algorithm,
which reduces computing time without sacrificing accuracy, effectively enhancing the real-time performance of
fault diagnosis. However, the data-driven model is essentially a “black box” that lacks detailed engine perform-
ance information, posing challenges for subsequent engine performance diagnostics.
With the advancements in physical model methods and artificial intelligence, the concept of digital twins has

emerged as an innovative approach. A digital twin is essentially a virtual replica that is connected to a physical
system or process. It collects and integrates data from the physical system using sensors, simulators, and other
technologies to create an accurate visual model. Digital twin models have the capability to analyse, optimize, and
predict the performance of physical systems, providing real-time information about the system’s operational status
and health (Bondarenko and Fukuda, 2020). However, there is currently a lack of research on digital twinning
specifically in the field of aeroengines. Aeroengines are complex physical systems, and effectively integrating
engine mechanism models with data-driven models to achieve digital twinning remains a challenging task
(Huang et al., 2023).
This paper introduces a digital twinning framework for aeroengines that employs low-rank multimodal fusion

methods to combine mechanism models with data-driven models. The proposed framework demonstrates
improved accuracy in performance prediction and fault diagnosis compared to using model-based and data-driven
methods separately. The mechanism model is constructed at the component level, while the data-driven model
utilizes recurrent neural networks. These models are coupled through low-rank multimodal fusion methods
to create the proposed data twin model. To achieve the engine performance diagnosis function of the digital
twin framework, support vector machines are utilized for fault diagnosis of the rotating components in the
engine gas path.
This paper presents a digital twinning framework for aeroengines, utilizing low-rank multimodal fusion

methods to integrate mechanism models with data-driven models. The proposed framework showcases enhanced
accuracy in performance prediction and fault diagnosis compared to employing model-based and data-driven
methods independently. The mechanism model is developed at the component level, with the data-driven model
incorporating recurrent neural networks. These models are interconnected through low-rank multimodal fusion
techniques to form the proposed data twin model. To fulfilling the engine performance diagnosis function of the
digital twin framework, support vector machines are employed for fault diagnosis of the rotating components in
the engine gas path.

Methodology

Component-level model

Aeroengines are complex systems that operate in harsh environments for extended periods, leading to degradation
of their gas path components and resulting changes in their performance. Consequently, developing an accurate
engine performance model is vital for analysing engine gas path performance and diagnosing faults effectively
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(Talaat et al., 2020). With the advancement of model technology and software, aeroengine performance simula-
tion technology has become a fast and reliable tool for engine engineers to evaluate engine performance.
Common engine performance models can be broadly classified into two categories: mathematical theoretical
models and component-level models (Li et al., 2012). Component-level models are preferred over mathematical
theoretical models as they provide a more comprehensive description of engine gas path components’ character-
istics and offer better guidance and support for engine performance and structural design. Therefore, subsequent
research in this field has focused on utilizing engine component-level models as the foundation for analysis and
development.
The engine model investigated in this study focuses on the CFM56-5B engine, which represents a typical

high bypass ratio turbofan engine with two spools and a booster. The structure of the turbofan engine is depicted
in Figure 1. The engine’s component-level model developed for this research comprises various modules, includ-
ing the intake, fan, low-pressure compressor, high-pressure compressor, combustion chamber, high-pressure
turbine, low-pressure turbine, outer bypass, and nozzle. The model environment employed in this study is
Matlab2020a.
In Figure 1, each block represents a specific module within the engine model. The Intake block represents the

intake port, FAN represents the fan module, LPC represents the low-pressure compressor module, HPC repre-
sents the high-pressure compressor module, Combustion represents the combustion chamber module, HPT
represents the high-pressure turbine module, LPT represents the low-pressure turbine module, Nozzle represents
the nozzle module, and Bypass represents the outer duct module. The model receives inputs such as flight alti-
tude, Mach number, and fuel flow, and solves the equilibrium equations under both steady-state and transient
conditions using the Newton-Raphson method (Li et al., 2018). It calculates the corresponding gas path para-
meters for each station of the engine during equilibrium. The component-level model possesses both steady-state
and transient capabilities. Table 1 presents the design point performance of the engine, while Table 2 displays
the relative absolute error (RE) results of relevant station parameters for the component-level model compared to
GasTurb13 under design performance conditions. The table demonstrates that the maximum error for the same
engine station is only 0.012%, indicating the accuracy of the performance calculation achieved by the developed
model. The component-level model undergoes modifications through an adaptive method using component
characteristic diagrams, with further details provided in reference (Li and Nilkitsaranont, 2009).

Data-driven model

Data-driven methods differ from model-based methods as they utilize existing information, experience, and data
to quantitatively analyse engine performance changes. These methods do not require the establishment of add-
itional complex mechanism models and possess characteristics such as dynamic learning and self-optimization.
The objective of this study is to develop an accurate digital twin model for aviation engines that can monitor
their health in real-time. However, component-level models often involve complex iterations, leading to low
computational efficiency and difficulty in meeting engineering requirements for real-time monitoring. While
data-driven models are sometimes viewed as black boxes, they can dynamically predict the future performance
degradation trend of aeroengines through historical data with high prediction accuracy. Moreover, they can
promptly respond to changes in engine operating conditions. Flight data typically consists of time-series data
with strong timeliness, and data-driven models can only predict real-time data based on historical flight data.

Figure 1. Schematic diagram of engine component-level model.
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Therefore, extracting relevant features from historical flight data and ensuring the predictive performance of real-
time data pose challenges that require the predictive ability of machine learning algorithms.
Recurrent Neural Networks (RNN) are a type of algorithm particularly suitable for learning continuous time

series data. The architecture of an RNN incorporates the ability to propagate information from previous time steps
to the current time step, enabling it to capture the temporal characteristics of the data. Figure 2 illustrates the struc-
ture of an RNN, which resembles that of a conventional multi-layer feedforward neural network. However, in an
RNN, the output of the hidden layer neurons is fed back and utilized as input for the subsequent time step, along-
side the input signals from the input layer neurons. This feedback loop allows certain neuron outputs to serve as
inputs, facilitating the RNN’s ability to handle time-dependent dynamics. The circular structure of an RNN allows
information to flow not only from the input at time t but also from the network state at time t− 1, affecting the
output state of the RNN at time t. This characteristic enhances the RNN’s capability to capture temporal depend-
encies and handle time-related dynamic changes (Asrav and Aydin, 2023). In this study, the RNN employs a
sigmoid activation function and is trained using the Backpropagation (BP) algorithm.

Low-rank multimodal musion

Multimodal musion using tensor representations

In general, modality refers to the manner in which things occur or exist, while multimodality refers to the com-
bination of two or more modes. Modes represent different sources or forms of information, such as text, images,

Table 1. Design point performance.

Parameter Value Unit

Thrust 95.31 kN

Total flow rate 322.65 kg/s

Total Pressure ratio 33.8

SFC 10.17 g/(kN*s)

Table 2. Design point performance validation.

Symbol Definition Units Engine Model GasTurb RE (%)

T13 Bypass exit temperature K 327.84 327.85 0.006

W13 Bypass exit mass flow kg/s 270.79 270.78 0.004

T3 LPC exit temperature K 389.33 389.34 0.003

W3 LPC exit mass flow kg/s 51.301 51.297 0.004

T4 HPC exit temperature K 802.79 802.83 0.006

T5 CC exit temperature K 1.6703 × 103 1.6704 × 103 0.007

W5 CC exit mass flow kg/s 52.071 52.066 0.008

T6 LPT exit temperature K 1.1138 × 103 1.1139 × 103 0.011

T8 Nozzle exit temperature K 834.51 834.61 0.012
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or voice. The current research field primarily focuses on processing three modes: image, text, and voice. The
rationale behind fusing these modes is that each mode provides unique representations and perspectives on
things. Consequently, there may be overlapping and complementary phenomena, as well as multiple interactions
between different modes of information. Effectively processing multimodal information can result in the extrac-
tion of rich feature information and enhance prediction accuracy (Wörtwein and Scherer, 2017).
The goal of multimodal fusion is to integrate unimodal representations into a compact multimodal representa-

tion for downstream tasks. Tensor representations have gained significant attention for their ability to capture
multimodal interactions. The tensor representation accomplishes this by converting the input representation to a
high-dimensional tensor and then transforming it to a low-dimensional output vector space. The tensor is con-
structed by taking the external product of the input modes (Zadeh et al., 2017). The input tensor Z is expressed
as follows:

Z ¼ �M
m¼1zm, zm [ Rdm (1)

where, �M
m¼1 represents the tensor outer product of a set of vectors indexed by M, and zm is the input representa-

tion. The input tensor Z is transformed by a linear layer g to produce a vector, which is expressed as follows:

h ¼ g(Z ; W , b) ¼ W � Zþ b, h, b [ Rdy (2)

where, W represents weight and b represents offset. Figure 3 is a schematic diagram of tensor fusion under dual
mode conditions.
One of the main drawbacks of tensor fusion is the need to calculate correlations between elements of different

modes through tensor outer products. This process can increase the dimensionality of the feature vector signifi-
cantly when the number of modes is large. This can result in a large amount of computation that can be difficult
to train and may lead to overfitting.

Figure 2. Network Schematic Structure of the RNN.

Figure 3. Schematic diagram of bimodal tensor fusion.
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Low-rank multimodal fusion with modality-specific factors

To address the limitations of tensor-based multimodal fusion methods when processing large amounts of modal
data, this paper proposes a low-rank multimodal fusion method (LMF). LMF decomposes the weight of a tensor
representation into tensor representations, utilizing the parallel decomposition of low-rank weight tensors and
input tensors to calculate tensor-based fusion. This reduces the number of parameters, improves computational
efficiency, and better adapts to a large number of modal application scenarios. The core idea is to perform a
multi-dimensional dot product after each mode is individually linearly transformed. This involves summing the
results of multiple low-rank vectors, thereby reducing the number of parameters in the model (Liu et al., 2018).
The tensor of order M (M is the number of input modes) can be decomposed into vectors in the following
form:

Wk ¼
PR
i¼1

�M
m¼1w

i
m,k, wi

m,k [ Rdm (3)

In the formula (3), the rank of the tensor is the smallest R obtained by decomposition, and the decomposition
factor of the rank R of the original tensor is {{wi

m,k}
M
m¼1}

R
i¼1. The low rank weight tensor can be modified to:

W ¼ Pr
i¼1

�M
m¼1w

i
m (4)

The LMF method utilizes each rank r to reconstruct low rank Wk, and recombines and concatenates these
vectors into the low rank factors of M modes. Equation (2) can be rewritten as:

h ¼ Pr
i¼1

�M
m¼1w

i
m

� �
� Z (5)

By introducing a low rank factor to reconstruct the calculation of the weight W, formula (5) can be further
rewritten as:

h ¼ Pr
i¼1

^M
m¼1

[w1
m, w

2
m, . . . , w

r
m] � z^m

" #
i

(6)

In the formula, ΛMm = 1 represents the meta product on a quantity sequence. Figure 4 shows a flow diagram
for decomposing the weight tensor W into low-rank factors in a dual-mode situation. As shown in Figure 4, the
low-rank factors are connected to form M-order tensors, which are used for element multiplication and summa-
tion along the first dimension of the bounding matrix. Instead of representing h using vector sets, it is calculated
using modal-specific decomposition factors and parameterized by M-order tensors. This approach greatly reduces
the dimensionality of the tensor Z and weight W, and prevents excessive computation and difficulty in training.

Figure 4. Schematic diagram of tensor fusion under dual-mode condition.
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Support vector machine

SVM (Support Vector Machine) is a widely used machine learning algorithm for classification and regression ana-
lysis. The basic concept behind SVM is to find a hyperplane or decision boundary in a high-dimensional space
to separate samples of different categories. In classification problems, SVM represents samples as vectors, and
aims to find a hyperplane that places samples of the same category on the same side of the hyperplane, while
samples of different categories are on opposite sides. If the samples cannot be perfectly separated, SVM allows a
certain degree of classification error while minimizing both the classification error and the distance from the
hyperplane to the sample points. This is the optimization goal of SVM. Figure 5 illustrates a schematic diagram
of a linearly separable classification support vector machine (Jana et al., 2023).
SVM has several characteristics that make it a popular machine learning algorithm, including:

1. SVM can handle both linear and nonlinear classification problems by using kernel functions to map the
input space to a high-dimensional space. This allows SVM to transform the nonlinear classification problem
into a linear classification problem, making it easier to find a hyperplane to separate different categories.

2. SVM performs well when processing high-dimensional data. Unlike other machine learning algorithms, SVM
is not affected by the curse of dimensionality, meaning that increasing the sample dimensions will not signifi-
cantly impact its performance.

3. SVM can be effective in small sample situations, as it only uses a subset of the samples for training. This
subset is called support vectors, which reduces the risk of overfitting and improves the generalization ability of
the model.

The classification effect of SVM can be optimized by adjusting hyperparameters such as the kernel function,
error tolerance, and regularization coefficient. This allows the user to fine-tune the model and achieve better clas-
sification results. Therefore, SVM is a useful tool for fault identification and classification in engine digital twins,
as it can handle complex classification problems, is not affected by high-dimensional data, and can be optimized
to improve classification performance.

Process framework

Aeroengine digital twin technology has the potential to assist operators in identifying engine issues and conduct-
ing predictive maintenance by analyzing real-time engine data. This can result in enhanced engine reliability,
safety, as well as reduced maintenance costs and risks. However, achieving accurate and efficient monitoring and
diagnosis of aeroengine performance using digital twin technology remains a significant challenge. To tackle this
challenge, a digital twin framework has been proposed based on an engine mechanism model and a data-driven
model. This framework accurately simulates the engine’s operational state and assesses its health status in real-
time by analyzing gas path measurement information obtained from sensors. Figure 6 illustrates the flowchart of
this digital twin framework. Through the utilization of this framework, operators can effectively monitor and
diagnose the performance of aeroengines with improved accuracy and efficiency, ultimately enhancing engine reli-
ability and safety.

Figure 5. Schematic diagram of linearly separable classification support vector machine.
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Firstly, a component-level model of the aeroengine mechanism is established to simulate the engine’s gas
path performance. This model can simulate the measured parameters of each gas path station’s inlet and outlet
sections based on the engine’s operating state, effectively reflecting the engine’s performance changes. The
mechanism model can also be self-optimized using adaptive methods to better represent the engine’s health
status. Secondly, an RNN-based data-driven model is developed. Historical flight data is utilized to train the
data-driven model, and the internal parameters of the RNN model are adjusted to enable real-time monitoring
of flight data. Subsequently, the mechanism model and the data-driven model are integrated through LMF
method, forming an engine digital twin model. In particular, the weights assigned to the two modalities are
computed through the fusion of mechanism model features and data-driven model features. These weights are
then concatenated with the two modal features to calculate a new fusion feature vector. This integration
leverages the advantages of both models to simulate the measured gas path parameters more accurately. Finally,
an engine performance diagnostic model is constructed using SVM to monitor the engine’s health status. This
is achieved by comparing the deviation between the simulated gas path measurement parameters and the
actual monitoring parameters. The improved accuracy of the generated gas path measurement parameters
obtained from the engine digital twin enables SVM to extract features more effectively, leading to more reliable
performance diagnosis results.

Results and discussion

As described in Section 2.1, the developed component-level mechanistic model enables precise simulation of the
engine’s gas path channel and can adapt itself to track the engine’s performance degradation. However, this
mechanistic model assumes relatively ideal conditions and does not account for the influence of measurement
noise and external environmental factors in the data. Consequently, accurately assessing the engine’s real-time
health status becomes challenging. In contrast, as outlined in Section 2.2, data-driven models have the ability to
dynamically learn from historical and current data, providing stronger real-time capabilities. Moreover, these
models can capture the effects of measurement noise and external environmental factors during the learning
process. However, data-driven models act as black boxes and do not reveal the trends of unmeasurable data, such
as changes in component characteristic parameters, within the engine. To address this limitation, LMF method
is employed to integrate the two models and establish an engine digital twin framework that harnesses the
strengths of both approaches. To assess the reliability of the developed digital twin framework, the proposed
method is tested following the process framework depicted in Figure 6. After obtaining separate prediction results
from the mechanistic model and the data-driven model, the LMF technique is used to fuse these results.
Subsequently, SVM are employed for engine performance diagnosis. By combining the insights from both

Figure 6. Flow Chart of Digital Twin Framework.
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models through the LMF method and using SVM for diagnosis, the reliability of the engine digital twin frame-
work is verified. This approach enables more accurate and comprehensive assessment of the engine’s health status
and performance.
Due to the unavailability of actual flight data, simulated flight data generated by the engine component-level

model described in Section 2.1 is utilized in the subsequent research. The simulated flight data generates one
data point per second to mimic the real sensor acquisition scenario. In order to enhance the realism of the
engine data, measurement noise is added to the simulated data to better simulate the engine’s flight condi-
tions. Assuming that the measurement noise follows a normal distribution, Table 3 presents the significance of
the engine gas path data and their corresponding noise levels. In this study, we have intentionally introduced a
small deviation as simulated noise after applying noise reduction techniques. However, it is important to note
that the primary focus of this study does not encompass the investigation of the impact of measurement noise
on model accuracy. The input to the engine digital twin framework consists of flight control data, including
flight conditions such as flight altitude (H) and Mach number (Ma), as well as control regulations such as fuel
flow rate (Wf ). Figure 7 illustrates the input data for the engine digital twin framework in this study. The
engine component-level mechanistic model computes the engine’s gas path measurement parameters based on
the input flight control data. These missions comprise three main stages: climb, cruise, and landing.
Throughout the climb and landing processes, the engine is treated as transient, meaning it experiences
dynamic changes in its operating conditions. The simulations aim to demonstrate the effectiveness and reliabil-
ity of the proposed digital twin method in capturing and analyzing the engine’s behavior under real-world
flight scenarios.
Similarly, the data-driven model, trained with sensor data, predicts the engine’s gas path measurement para-

meters based on the flight control data. To account for the measurement issues encountered with actual sensors,
the output of the digital twin framework corresponds to the gas path measurement parameters presented in
Table 2. Figure 8 demonstrates the predicted values of the total temperature (T8) at the exit of the low-pressure
compressor, as generated by the mechanistic model, the data-driven model, and the digital twin framework with
the LMF method. From the figure, it can be observed that while the mechanistic model accurately predicts the
engine’s performance changes based on the flight control data, it struggles to account for the influence of meas-
urement noise. In comparison, the data-driven model exhibits better prediction accuracy and can incorporate
noise, but it may suffer from local overfitting and inaccuracies in some data points. The digital twin framework
with the LMF method generates predicted results that exhibit the best fit with the actual values and are closer to
the real data.

Table 3. Measurement parameters and noise level description

Parameters Definition Reference noise level

N1 LP spool speed 0.25%

N2 HP spool speed 0.25%

T2 Fan outer exit temperature 0.75%

P2 Fan outer exit pressure 0.5%

T3 LPC exit temperature 0.75%

P3 LPC exit pressure 0.5%

T4 HPC inlet temperature 0.75%

P4 HPC inlet pressure 0.5%

T8 LPT exit temperature 0.75%

P8 LPT exit pressure 0.5%
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Figure 7. (a–c). Flight Control Data. (a) Control law of H. (b) Control law of Wf. (c) Control law of Ma.

Figure 8. (a–c). The T8 output results of each model. (a) T8 prediction distribution diagram of mechanism model. (b)

T8 prediction distribution diagram of data-driven model. (c) T8 prediction distribution diagram of digital twin model.
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In order to better demonstrate the advantages of the proposed digital twin framework, we compared the
mean absolute error (MAE) of the predicted values of different models. The calculation formula for MAE is as
follows:

MAE ¼ 1
n

Xn
i

yi � yi�
yi

����
�����100% (7)

where yi and y*i represent the actual value and predicted value of the i-th data sample, respectively.
Figure 9 displays the Mean Absolute Error (MAE) of the gas path measurement parameters obtained using

different methods. It is evident from Figure 9 that the digital twin method yields lower errors compared to
both the physics-based model and the data-driven model, demonstrating that the digital twin method signifi-
cantly improves prediction performance. Although the MAE of the data-driven model is higher than that of
the digital twin method, its prediction results are considerably better than those of the physics-based model.
This discrepancy arises because the physics-based model captures the trend of aeroengine performance
changes but cannot account for small measurement deviations present in actual measurements. On the other
hand, the data-driven model can incorporate the influence of noise during the learning process, but being a
black box, it fails to capture the degradation of unmeasurable parameters such as flow rate, pressure ratio,
and efficiency in the aeroengine. In terms of overall MAE, the physics-based model has an MAE of 0.55%,
the data-driven model has an MAE of 0.31%, and the digital twin model achieves the lowest overall MAE
of only 0.24%.
Through the aforementioned case studies, we have demonstrated the predictive accuracy of the digital twin

framework in accurately simulating actual gas path measurement parameters for engine performance diagnosis.
However, obtaining actual fault data for aviation engines can be challenging. Therefore, in this study, a mechan-
istic model was employed to simulate actual engine gas path fault data. This simulated data, along with Support
Vector Machines (SVM), was utilized to diagnose engine gas path performance faults, completing the overall
digital twin framework. The study assessed the degree of degradation by incorporating an engine fault rule
library. Based on the engine gas path analysis theory, the mechanistic model can simulate the degradation of gas
path measurement parameters by modifying component characteristic parameters. This, in turn, enables the
simulation of degradation in single or multiple gas path components. Common fault scenarios in the engine gas
path include issues such as dirt, erosion, and corrosion. Table 4 provides the relationship between physical faults
and component characteristic parameters, outlining how the degradation of specific components affects the gas
path. Table 5 presents nine single and multi-type fault scenario cases studied in this research, as they have a
higher probability of occurrence. The gas path fault conditions in Table 5 are represented by the corresponding
component degradation conditions outlined in Table 4. Utilizing the degradation rates specified in Table 4, dif-
ferent gas path fault conditions are generated by randomly generating the degradation amounts of each gas path
component’s performance parameters. The developed mechanistic model is then used to generate gas path meas-
urement parameters based on the gas path fault scenarios.

Figure 9. MAE of each model.
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To validate the effectiveness of the proposed digital twin framework, the engine performance diagnosis func-
tion within the framework was performed using SVM, as described in Section 2.4. Table 5 presents the corre-
sponding nine types and combinations of faults considered in the study. A total of 2,700 data samples were
collected, with 300 samples for each type of fault. The confusion matrix of the predicted fault classification
results is illustrated in Figure 10. Table 6 provides the diagnostic accuracy for different fault cases. The results
indicate that the digital twin framework can accurately distinguish all nine fault cases, with only a small number
of samples being misclassified. Notably, Case 9 exhibited the highest error rate, with a total of 19 samples being
misclassified, with 9 fault samples mistakenly classified as Case 7 and 10 fault samples mistakenly classified as
Case 7. Despite these misclassifications, the digital twin framework still demonstrates high accuracy, with an
overall classification accuracy of 97.3%. In conclusion, the case study presented in this paper demonstrates that
the proposed digital twin framework is well-suited for aeroengine performance diagnosis tasks.
The proposed method runs on a computer equipped with an AMD Ryzen 9 3900X CPU and 32GB of

memory, allowing it to process the diagnostics of 2,700 engine operating points in just 98.7 seconds. In other
words, it takes only 0.0366 seconds to analyze a single engine operating point. This impressive performance
demonstrates that the proposed digital twin method is highly suitable for aeroengine performance diagnosis tasks.

Table 4. Relationship between the physical faults and health parameters

Physical fault Flow capacity
change (A)

Isentropic efficiency
change (B)

Ratio A:B Range

Compressor
fouling

↓ ↓ ∼3:1 (0, −7.5%), (0, 2.5%)

Compressor
erosion

↓ ↓ ∼2:1 (0, −4%), (0, −2%)

Turbine fouling ↓ ↓ ∼2:1 (0, −4%), (0, −2%)

Turbine erosion ↑ ↓ ∼2:1 (0, 4%), (0, −2%)

Table 5. Cases based on the cause-effect scenario.

Case FAN
fouling

LPC
fouling

HPC
fouling

LPC
erosion

HPT
fouling

LPT
fouling

LPT
erosion

1 ×

2 ×

3 ×

4 ×

5 ×

6 ×

7 × × × ×

8 × × × × ×

9 × × × × ×
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Conclusions

In order to enhance the real-time performance diagnosis of aeroengines, this paper introduces a digital twin
method that combines a low-rank multimodal fusion mechanism model with a data-driven model. By leveraging
the different modal engine information provided by the mechanism model and data-driven model, the LWF
method fuses their respective features to jointly represent them as the corresponding engine digital twin model.
The engine digital twin model based on the LWF method achieves high-precision performance prediction.

Figure 10. Fuzzy Matrix of Diagnostic Results.

Table 6. Diagnostic accuracy of each fault case.

Case Accuracy

Case1 99%

Case2 98.3%

Case3 98.7%

Case4 99%

Case5 99%

Case6 99%

Case7 95%

Case8 94%

Case9 93.7%
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Additionally, by incorporating SVM for diagnosing engine gas path performance faults, the overall digital twin
framework is established to accomplish engine performance diagnosis.
The feasibility of the proposed method is demonstrated through a comprehensive case study. The main con-

clusions derived from this study are as follows:

1. The proposed digital twin method outperforms the mechanism model and data-driven model in simulating
the actual health status of the engine. The overall MAE of the digital twin model is only 0.24%. This signifi-
cant improvement in simulation accuracy enhances the representation of gas path parameters under full flight
tasks and accurately reflects the performance changes of engine gas path components.

2. The proposed digital twin method achieves accurate diagnosis of engine gas path faults, with an overall classi-
fication accuracy of 97.3%.

3. The proposed digital twin method enables real-time performance diagnosis of aeroengines, providing effective
data support for engine health management.

In summary, we proposed a new approach to the difficulty of integrating actual physical data and virtual simula-
tion data in the digital twin scheme of aeroengines. The findings of this paper validate the effectiveness of the
proposed digital twin method for aeroengine performance diagnosis. The method’s capability to accurately simu-
late engine health, diagnose faults, and facilitate real-time monitoring contributes to enhanced engine health
management.

Nomenclature

LPC low pressure compressor
HPC high pressure compressor
HPT high pressure turbine
LPT low pressure turbine
W mass flow
N rotor rotational speed
T temperature
P pressure
RNN recurrent neural networks
SVM support vector machine
LWF low-rank multimodal fusion
MAE mean absolute error
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