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Abstract

This paper presents a High-Performance Data Analytics procedure for com-
puting Spectral Proper Orthogonal Decomposition (SPOD) from high-fidel-
ity simulations. The code is implemented in Python, leveraging the Dask
library for ease of programming and efficient parallel computing. The
method is applied to Large Eddy Simulation data of a low-pressure turbine
blade, showing the ability to extract the fundamental dynamics and their
link to loss generation mechanisms. The mathematical framework behind
the SPOD implementation in Python and the decomposition of the total
pressure transport equations are discussed. Scalability tests using an exem-
plary dataset demonstrate a very high efficiency of the implementation.
Results from SPOD are compared with a classical decomposition framework
such as proper orthogonal decomposition and the paper discusses the lim-
itations and advantages of SPOD. The procedure is open-access and avail-
able in an online repository, promoting accessibility and collaboration
within the scientific community.

Introduction

The use of high-fidelity simulations to analyze turbomachinery flow
fields is nowadays a common practice, even at industrial level. Hi-fi
simulations may provide a wealth of data for detailed investigation of the
flow physics and unveil the dynamics that generate losses. As discussed
in the review paper of Sandberg and Michelassi (2022), high-fidelity
simulations may be used to extract local information to pinpoint local
loss causes. To this end, advanced post-processing methods have been
introduced in the last years.
Wheeler et al. (2016) were among the first to show the integral

entropy rise in a high pressure turbine blade solved with Direct
Numerical Simulation (DNS). They used the entropy transport equation
by directly computing the contribution to viscous dissipation by the
time-mean strain field and by the turbulence field. Similarly, Miki and
Ameri (2022) showed the instantaneous dissipation obtained from Large
Eddy Simulation (LES) of a transonic turbine blade. Further detailed
analysis of the transport equations of entropy, total pressure or mechan-
ical work potential have been provided by several research groups (e.g.,
Leggett et al., 2020; Przytarski and Wheeler, 2020; Zhao and Sandberg,
2020; Przytarski et al., 2024b). In these works the losses are evaluated
by means of an integral approach within the control volume rather than
the classical inlet to outlet loss estimation. With these methods, it is easy
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to identify where losses are generated. However, it is rather difficult to decouple the dynamical features that lead
to the loss generation. In order to overcome this limit, Lengani et al. (2019) applied the Proper Orthogonal
Decomposition to LES data of a low pressure turbine blade to identify the most energetic dynamical features.
They showed that total pressure transport equation in the Reynolds average sense may be re-written to highlight
the contribution of each mode (i.e., dynamical feature). This method has been recently applied to several LPT
cases to discern the loss causes (e.g., Dellacasagrande et al., 2023; Russo et al., 2024).

The amount of data that are generated nowadays by LES or DNS easily exceeds tens of terabytes. Therefore,
the use of high-performance computing services is becoming necessary also for the post-processing of such simu-
lations. An open source high performance data analytic (HPDA) code, developed within the Euro-HPC
ACROSS project, has been described in Biassoni et al. (2024). This open code performs POD on large datasets
(tens of TB) and applies the loss breakdown described in Lengani et al. (2019). The present paper provides an
extension of these previous work by computing the losses in the Spectral POD (Towne et al., 2018) modal
decomposition framework. Among the different open versions of the SPOD (see for example He et al., 2021;
Rogowski et al., 2024), the present one leverages on the distributed computation of the Dask framework of
Python by providing an ease of programming and good efficiency on multi-node high performance computers.

Methodology

Fundamental equations

Losses of turbomachinery bladings can be evaluated by integrating the substantial derivative of entropy over the
computational domain, as one of the most used metrics (e.g., Wheeler et al., 2016; Russo et al., 2024). In most
cases, by considering an adiabatic transformation, this operation is equivalent to the integral volume of the sub-
stantial derivative of the total pressure with the opposite sign, according to the Gibbs equation (see for example
Denton, 1993). Following a Reynolds decomposition approach, the time average of the substantial derivative of
the total pressure can be written, adopting Einstein notation, as Przytarski et al. (2024b):
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where the equation is written just for simplicity in the incompressible formulation but it may be easily extended
to the compressible case by using Favre averaging operation. The overbar indicates the time average operation
and the ui components indicate the mean velocity, while the term u0i indicates the fluctuating velocity. The first
three terms on the right-hand side correspond to the substantial derivative of the time mean total pressure,
whereas the last three terms may be considered in most cases negligible and exceptions to this are discussed in
detail in Przytarski et al. (2024a,b). By further neglecting the substantial derivative of the turbulent kinetic
energy (u0iu0i), the total pressure variation can be approximated as:
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Higher order terms

(2)

where K is the mean flow kinetic energy. The viscous dissipation due to the mean strain (ϕM ) depends just on
the time mean flow and the PTKE depends on instantaneous fluctuating velocity. Namely, each instantaneous
flow field realization (a snapshot) contributes to the overall time mean value. In particular, in Equation 2, the
terms responsible for the largest contribution of loss generation are ϕM and PTKE , as also discussed in Zhao and
Sandberg (2020). The overall variation of total pressure (i.e., entropy rise) can be then calculated as the volume
integral of ϕM and PTKE :

Δpt /
ð
V
(ϕM þ PTKE ) dV (3)

As discussed in Lengani et al. (2019), it is possible to decompose the contribution to the Reynolds stress
tensor (u0iu0j) by projecting the instantaneous fluctuating velocity on a complete orthogonal basis. Namely, an
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orthonormal basis X may be used to decompose the fluctuating velocity field as u0i(x) ¼ Xϕui(x). The modes ϕui
are carrying the square root of the energy and provide the spatial representation of the velocity u0i. Considering
that the orthonormal basis is in common between the different velocity components, the Reynolds stress tensor
may be written as (see also Perrin et al., 2007):

u0i(x)u0j(x) ¼
1
Nt
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1
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Xφuj(x)
� �H

Xφui ¼
1
Nt

φH
uj (x)X

HXφui(x) ¼
1
Nt

φH
uj (x)φui(x)

¼ 1
Nt

XNt

k¼1

conj(φ(k)
ui (x))φ

(k)
uj (x)

(4)

where the time mean operation is initially expressed as the scalar product between the velocity data array, Nt is
the number of instantaneous flow field realizations, H indicates the Hermitian transpose and the product XHX is
the identity matrix by definition of the orthonormal basis. The Reynolds stress may be then computed as a sum-
mation of the spatial modes (note that the complex conjugate conj applies when the modes are complex
numbers). Finally, it is possible to compute the turbulent kinetic energy production as Lengani et al. (2019):
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i )φ(k)

j
@ui
@x j

(5)

In this way, each mode k contributes to a quota of the turbulent kinetic energy production. By finding an
optimal base X , it is possible to decouple the effect of the different dynamical features (represented by the modes
φ(k)) to the total pressure loss as computed from Equation 3. The application of the POD modal decomposition
framework has been developed in several previous papers (e.g., Lengani et al., 2019; Dellacasagrande et al., 2023;
Russo et al., 2024) and it is here employed as reference for comparison with the SPOD results. Note that, for
this analysis to hold true, it is essential that the orthonormal basis X is common to the velocity components.
Consequently, it is necessary to build the data matrix from at least the three velocity components. This operation
may result in significant memory requirements for the computation, (e.g., for this limitation Fiore et al., 2023
computed SPOD from a single velocity component by adopting a serial code). The next section describes in
detail the new SPOD-HPDA code, that leverages distributed memory among several compute nodes, and pre-
sents its scalability results. Two different algorithms for the computation of SPOD modes are used and
described.

Python SPOD procedure

This new procedure has been developed in Python by leveraging the Dask (https://www.dask.org/) library for dis-
tributed computation. The advantage of Dask is that it is no longer necessary for the user to manually partition
domain data to provide parallel computation, since data chunks are automatically managed by Dask. Another
advantage of Dask is that you can start from a serial prototype based on NumPy and Pandas libraries and
convert it very easily to a fairly large-scale distributed code. For a more complete description of how Dask works,
see Viviani et al. (2022).
The procedure is visualized in Figure 1a and described in the algorithm depicted in Figure 1b. Please note

that our beseline SPOD implementation follows the theoretical formulation of Towne et al. (2018). For the
practical “serial” implementation the works of Schmidt and Colonius (2020), He et al. (2021) and Fiore et al.
(2023) may be taken as a reference. The common practice of overlapping data in time, typically used in such
implementations, is not employed here. This decision ensures a complete orthonormal decomposition in both
frequency and SPOD modes. A parallel implementation of SPOD, which overcomes limitations of memory
usage and running time, is presented in Rogowski et al. (2024) by utilizing MPI communication between com-
putational nodes. In the present paper, distributed computation is directly managed by Dask, and the variables
in the SPOD Kernel are kept separated as much as possible. In detail, the relevant operations managed by Dask
are highlighted in the algorithm of Figure 1b with the suffix “da,” otherwise the explicit use of numpy library is
indicated with “np.” The output files are read by Dask (see Biassoni et al., 2024) and stored in three data matri-
ces. The three fluctuating velocity components (Ui in the algorithm) are stored in the three data matrices U, V,
W (step I of Figure 1a). Each column vector of the matrix retains the spatial information. The rows got dimen-
sion Nt (i.e., the number of instantaneous realizations or snapshots), while the columns got dimension Ms, the
total number of computational mesh points. The first step of SPOD is fragmenting the time sequence in a
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discrete number of blocks Nb (step II), which is obtained by means of an array reshape operation (step III).
Dask then manages the discrete Fourier transform (DFT) using the FFT algorithm along the temporal direction
of size nDFT (with nDFT �Nb ¼ Nt ) to obtain the matrices Q̂Ui for each velocity component (step IV). Each 3D
array Q̂Ui contains the frequency information along its last dimension (shape 2 according to Python indexing,
which starts from 0). In the baseline implementation of SPOD, the data for each frequency are then collected
within a for loop in order to store the matrices (Q̂Ui)ifreq at the frequency loop index ifreq (step V), this oper-
ation is done for all variables at hand (step VI). As observed by Rogowski et al. (2024), the number of frequen-
cies of interest is nDFT =2þ 1, as specified in the algorithm, and this is because of the symmetry properties of
the DFT. The matrices (Q̂Ui)ifreq are then concatenated to form the Q̂ifreq matrix (from step VI to VII) in order
to compute the cross-correlation matrix Cifreq within the for loop (step VII) and its eigenvectors θifreq (step
VIII). Note that, at present, Dask does not provide the equivalent of the eigenvector calculation of the numpy
library and therefore the computation of step VIII is managed by numpy. Nevertheless, the Cifreq matrix is very
small with dimension [Nb, Nb]. The SPOD modes are computed separately for each variable as
(φUi)ifreq ¼ (Q̂Ui)ifreqθ (step IX) and stored in a 3D array (step X) with the same shape of matrices in step III.
Finally, to ease the computation of the PTKE , the SPOD modes are reshaped to a matrix with dimension
[Ms, Nt ]. Namely, SPOD modes are sorted to have first the ordered modes at each frequency index, as it will be
better discussed in the result section.
The SPOD computation, detailed in steps V to IX of Figure 1a, has been optimized by eliminating the use of

for loops. The improved algorithm, outlined in Figure 2, takes advantage of the execution order in the eigen-
vector solver from the numpy library. The input data are rearranged using stacking and transposing operations,
resulting in a three-dimensional array, C , with dimensions [nDFT =2þ 1, Nb, Nb]. The first dimension corre-
sponds to the frequency index, and the other two dimensions represent the cross-correlation matrix for each fre-
quency, Cifreq. The numpy function eigh is then applied, solving the eigenvector problem for each Cifreq. This
optimization ensures that the output SPOD modes are equivalent to those produced by the baseline
implementation.
The procedure with the two SPOD implementations is openly available at the following link: https://git.

mycloud-links.com/across-public/orchestrator/applications/aeronautics. The online code includes a test dataset
and both POD and SPOD procedure for computation of the PTKE .

Figure 1. Spectral-POD procedure: SPOD computational sequence (a); complete HPDA algorithm (b).
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Scalability tests

Scalability results, concerning the SPOD distributed computation only, are presented here on a relatively large
LES dataset. The dataset consists of approximately 80 million computational points and 950 snapshots.
Originally stored in CSV files, the snapshots were converted to binaries using the procedure outlined in Biassoni
et al. (2024). The binary files (in Parquet format) occupy around 2TB of disk space, as the three velocity vari-
ables were stored.
Both strong and weak scalability tests for baseline and optimized SPOD implementations are shown in

Figure 3. In the former, the LES database is analyzed with an increasing number of computational nodes to
observe the speed-up obtained by increasing the CPUs. Conversely, in the latter, the number of snapshots is pro-
gressively increased alongside the number of computational nodes to assess the code efficiency. All tests described
here were executed on the CINECA cluster LEONARDO (https://www.hpc.cineca.it/systems/hardware/
leonardo/), utilizing the general-purpose CPU partition (DCGP). In brief, each computational node in DCGP is
equipped with 2 � 56 Intel Sapphire Rapids cores running at 2.0 GHz and 512 GB of RAM. Strong scalability
tests were conducted using a halved snapshot size (Nt ¼ 480) to limit the use of resources. The tests have been
conducted by setting Nb ¼ 10 and consequently nDFT ¼ 48, and were repeated at least three times for statistical
validity. In Figure 3a, the running time is depicted as black curves, while the computed efficiency is shown in
blue, with its corresponding axis on the right for reference. The baseline SPOD implementations is identified by

Figure 2. Optimized Spectral-POD algorithm with no for loops.

Figure 3. Running time and efficiency of scalability tests: Strong scalability (a); weak scalability (b).
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circles, and the optimized one by crosses. The optimized implementation is consistently faster (i.e., lower
running time) than the baseline by a factor of about 3. However, while the speed-up is consistent, it is not ideal,
as using 16 nodes results in an efficiency of about 40% for both implementations. Note that the baseline imple-
mentation could be executed with fewer nodes. This is because the operation in the optimized implementation
are performed all at once by the Dask scheduler, which leads to higher memory usage compared to the baseline
case. In terms of strong scalability, the present method is less efficient than that of Rogowski et al. (2024) since
they obtained a 76% efficiency while increasing the computational resources by a factor of 10.
Weak scalability tests have been performed by increasing the number of snapshots while maintaining the par-

ameter nDFT constant, following the approach outlined in Rogowski et al. (2024). The results, depicted in
Figure 3b, illustrate the running time (in black) and efficiency (in blue). Notably, the running time remains
almost constant for both implementations. It is below 10 minutes for the baseline code, and about 3 minutes for
the optimized one even as the database size reaches 2TB. The efficiency consistently remains high, above 70%
for both implementations, despite the dataset size quadrupling. In this scenario, the Dask implementation results
seem to surpass those reported in Rogowski et al. (2024), since they achieved a 64% efficiency while tripling the
dataset size.

Results and discussion

To demonstrate the potential of the modal decomposition framework for loss analysis, the HPDA code is
applied to LES of a typically aft-loaded LPT blade. The simulation was conducted using the commercial software
STAR-CCM+ and involving a segregated flow model with bounded-central differencing. A 2nd order implicit
backward differentiation scheme has been adopted for the time derivative, while the WALE model was selected
for the subgrid-scale model. Given the low Mach number (,0:05) of the selected condition, simulations have
been run considering an incompressible flow regime, while Reynolds number has been set to 1:1� 105. The
LPT blades were situated within a stage-like environment, composed of a 2D repeating stage with a degree of
reaction equal to 0.5 and the Reynolds number based on the axial chord and exit velocity is 1:1�105. The com-
putational grid used for the calculations is a 2D-extruded polyhedral mesh, extending for approximately a 25%
of the axial chord in the span-wise direction and comprising around 30 million spatial points, with yþ , 1 and
xþ ¼ zþ � 20 all over the blade profile. More details about the LES numerical setup can be found in Russo
et al. (2024). Instantaneous data are collected for a total of 4 blade passing periods, corresponding to a total of
560 snapshots. The HPDA application focuses on the vane blade domain. The first step in the procedure, as
described in Biassoni et al. (2024), includes data interpolation from the unstructured mesh to a structured one,
which is made as uniform as possible to exclude the volumes in the mode computations. Please also note that
this dataset is smaller and different than the one used for scalability tests.
Figure 4 displays the contour plot of the fluctuating axial velocity u0 for a representative snapshot of the

instantaneous flow field (on the left). The wake generated by the upstream blade is visible in the snapshot,
marked as blue patterns at the domain’s inlet. Each snapshot contributes to the time mean PTKE defined in
Equation 2. It is therefore possible to define the quota of PTKE for the kth snapshot at time (tk) as
PTKE (tk) ¼ �ρui(tk)

0u j(tk)
0 @ui
@xj
. This instantaneous PTKE is shown as a contour plot with superimposed iso-

surfaces at low and high production on the right of the picture. Intuitively, it is possible to associate the produc-
tion of TKE with the inlet wake in the middle of the blade passage. Similarly, positive PTKE occurs in the
boundary layer, where back-scatter (conversion of turbulence to mean kinetic energy) is also observed with nega-
tive value of PTKE . However, it is difficult to decouple the dynamical features by this approach. Namely, the
volume integral of the instantaneous PTKE may only allow the identification of where losses occur.

Modal decomposition

The modal decomposition framework aims to overcome the limitation observed in the analysis of the instantan-
eous flow field. To this purpose POD and SPOD have been already applied to better understand the flow field
in LPT (see for example Lengani et al., 2022; Fiore et al., 2023, respectively). However, at least to the best of
the authors’ knowledge, the two decomposition techniques have not been directly compared in the turbomachin-
ery research field. Figure 5 aims at summarizing their different properties. Figure 5a shows the relationship
between the mode number and the frequency. For SPOD this relationship is about linear since the SPOD
modes are obtained at a fixed frequency index as discussed in the section Python SPOD procedure. In this case,
we considered Nb ¼ 5 and ordered the SPOD modes by frequency index. Consequently, the 5 SPOD modes at
the 0 frequency index range from 1 to 5, modes 6 to 10 are at the frequency index 1, and so forth. In contrast,
POD modes are orthogonal in time and do not have a fixed or ordered frequency index. The DFT of the POD
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temporal coefficients may reveal the main frequency of the mode, represented by the black dots in Figure 5a.
However, almost all POD modes exhibit more than one active frequency (these active frequencies are depicted
by the gray contour). Please note that the inclination of the frequency fit of POD temporal coefficients (dotted
blue line) is half of that of SPOD since the SPOD modes are complex-valued and symmetric above the Nyquist
frequency. As indicated by Equation 5, each mode carries a portion of the PTKE . The volume integral of PTKE
per mode is depicted for the first 15 modes in Figure 5b. Since only nDFT =2þ 1 SPOD modes were computed
(as shown in Figure 1), their magnitudes were doubled to account for their symmetric part (above the Nyquist
frequency). Both modal decomposition approaches highlight modes that alone capture more than 1% of the
total integral value. Particularly, POD modes 1 and 2, being the most energetic, together capture more than 5%.
Similarly, SPOD mode 6, representing the most energetic mode at frequency index 1, captures about 5% of the
PTKE . According to Figure 5a, POD modes 1 and 2 and SPOD mode 6 have almost the same frequency, or at
least, given the lower frequency resolution of SPOD, they fall within the same frequency bin. Furthermore,
POD modes are solely ordered by energy, and, likewise, the PTKE per mode decreases as the mode number
increases. However, they may represent considerably different dynamics. For instance, the frequency of POD

Figure 5. Modal decomposition results and comparison between POD and SPOD. The SPOD modes are arranged in

descending order of energy, i.e. the first mode at a given frequency is the most energetic. (a) Frequency-mode rela-

tionship and (b) Integral value of PTKE per mode.

Figure 4. Exemplary time snapshot of the instantaneous flow field (left) and instantaneous PTKE (right).
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modes 3 and 4 is much lower than that of mode 5. In contrast, the SPOD modes clearly highlight the frequency
band of interest that groups them (as also indicated by the abscissa at the top of Figure 5b).
Figure 6a and 6b show the local PTKE for selected modes of POD and SPOD, respectively. To be consistent

with the above discussion, POD modes 1 and 2, which represent the periodic deterministic disturbance of the
inlet wake (as discussed in Lengani et al., 2019), are summed up. This is consistent with the SPOD representa-
tion of mode 6 (the most energetic at frequency index 1), since the SPOD mode is complex and its symmetric
DFT part is considered by doubling the real-valued PTKE . The region of maximum PTKE is located within the
blade passage, where the highest interaction between the deterministic velocity fluctuations of the inlet wake and
the strain within the blade passage occurs. This region is highlighted in yellow in the plots of POD modes 1+2
and SPOD mode 6. Although both representations are quite similar, POD is energetically optimal as it captures
larger iso-surfaces. This may be also related to an earlier convergence of POD with respect to SPOD.
POD modes 3 and 5 capture structures close to the SPOD frequency index 0 and 2 (according to Figure 5a).

Namely, the representation of SPOD mode 1 at 0 frequency index is close to POD mode 3, since both track
low-frequency streaks (marked in yellow) in the fore part of the blade. This is not the case for SPOD mode 11
at frequency index 2. POD mode 5, in fact, highlights structures related to transition (as marked over the plot)
since the iso-surfaces of PTKE appear small and their production (red contour) is limited to the rear part of the
suction side (see also Lengani et al., 2022). On the other hand, SPOD mode number 11 at frequency index 2
still highlights a streamwise elongated area of high PTKE , being representative of streaky structures related to the
inlet wake perturbations.
The observations above are confirmed and quantified by the bar charts of Figure 7, where the contribution of

the modes under examination to the total PTKE is reported as a fraction for each subregion of interest within the

Figure 6. POD (a) and SPOD (b) mode decomposition, PTKE per mode, red and blue iso-surfaces identify regions of

production and backscatter, respectively. The most energetic SPOD modes for each frequency index are shown.
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computational domain. This is done by leveraging the properties of the volume integral approach, by which 5
different integration regions are defined: the accelerating part of the suction side in red, its decelerating part in
yellow, the pressure side in purple, the wake region (downstream of the trailing edge) in light blue and the
passage region in green.
Overall results, as previously discussed in Lengani et al. (2019) and Dellacasagrande et al. (2023), are summar-

ized with the contribution per mode of the volume integral of PTKE (see Equation 5). Figure 8 shows the cumu-
lative loss contribution per mode of POD and SPOD (left and right, respectively). The total loss is depicted in
blue. Both modal decompositions lead to the same final integral value and the accuracy of the proposed method-
ology is within 3% of the inlet to outlet loss computation (see Biassoni et al., 2024). Note that the viscous dissi-
pation is a reference value taken as mode 0. The main difference between POD (Figure 8a) and SPOD
(Figure 8b) lies in the distribution of loss with respect to mode number. SPOD makes clear that low frequency
content (first 5 modes) has a minor contribution only in the passage region. Otherwise, loss generation in the
decelerating part of the suction side and in the wake region is triggered by higher frequency content. It is inter-
esting to note that SPOD representation is almost as optimal as POD while in this latter case the frequency con-
tents are somewhat mixed.

Conclusion

The paper provides an open-access HPDA code for the analysis of the transport equation of total pressure in
high-fidelity simulations of turbomachinery. The algorithm of the procedure and its implementation, utilizing

Figure 7. Bar charts of mode contribution to PTKE per domain zone: POD results (a), SPOD (b).

Figure 8. Cumulative contribution of modes to the overall losses: POD results (a), SPOD (b).
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Python and the Dask library, are discussed in detail. Strong and weak scalability tests are provided and compared
with similar codes in the literature. The current procedure exhibits less efficiency in terms of strong scalability.
However, it demonstrates highly efficient weak scalability, making it well-suited for handling very large datasets
with low programming effort.
The HPDA code is applied to LES of a typical aft-loaded LPT blade. POD optimally captures (from a math-

ematical perspective) flow structures and ranks them by energy and, therefore, by PTKE . Conversely, SPOD ranks
them by frequency, facilitating the grouping of dynamic features based on frequency bands. Considering the
rapid execution time of the current code on large databases, it holds promise for analyzing the growing volume
of high-fidelity simulations within the turbomachinery domain. This could lead to achieving an optimal identifi-
cation of loss sources by pinpointing the dynamic features responsible for these losses.
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