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Abstract

Alternative fuel for aviation has been the centre of serious focus
for the last decade, owing mostly to the challenges posed by the
price of conventional petroleum fuel, energy security and
environmental concerns. The downslide in the oil prices in the
recent months and the fact that energy security is not consid-
ered a major threat in commercial aviation, these factors have
worked negatively for the promotion of alternative fuels. How-
ever, the continuous commitment to environmental stewardship
by Governments and the industry have kept the momentum
going towards the transparent integration of renewable alter-
natives in the aviation market. On the regulatory side, much
progress have been made in the same timeframe with five
alternative fuels being certified as synthetic blending compo-
nents for aviation turbine fuels for use in civil aircraft and
engines. Another seven alternative fuels are in the various stages
of certification protocol. This progress has been made possible
because of the extensive performance testing, both at full
engine conditions and at engine components level. This article
presents the results of engine performance and air pollutant
emissions measurements gathered from the alternative fuels
qualification testing conducted at the National Research Council
Canada over the last seven years. This benchmarking data was
collected on various engine platforms at full engine operation at
sea level and/or altitude conditions using a variety of aviation
alternative fuels and their blends. In order to provide a reference
comparison basis, the results collected using the alternative
fuels are compared with baseline Jet-A1 or JP-8 conventional
fuels.
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Introduction

Owing to the remarkable and combined efforts from stakeholders across the complete fuel supply
chain, alternative aviation fuels are now a reality. High oil prices and energy security, two of the main
driving factors behind the initial quest for alternative fuels, are currently not of considerable concern in
commercial aviation. In fact, the declining oil prices in the recent year or two have worked negatively
for the promotion of alternative fuels. However, the commitment by Governments and the industry to
reduce environmental impact have kept the momentum towards the development, certification and
transparent integration of renewable alternatives in the aviation market. These fuels not only reduce
reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer
promise for meeting the carbon-neutral growth target of aviation industry. As a result, fuels processed
through five different pathways, Fischer Tropsch (FT), Hydroprocessed Esters and Fatty Acids
(HEFA), Synthesized Iso-Paraffin (SIP), Synthesized Paraffinic Kerosene plus aromatics (SPK/A) and
Alcohol to Jet (ATJ) have already been certified as blending components to the conventional jet fuel
(ASTM International, 2017). Another seven alternative fuels are in the various stages of certification
protocol, thus providing the aviation industry with a variety of fuel options.

Similarly, from the bulk production perspective, tremendous progress has been made in the same
timeframe where a number of demonstration and commercial facilities are either up and running or
will be online shortly, with large conventional oil refineries teaming up with the developers of the
various alternative fuel pathways.

In the last decade, Canada has been involved in the area of aviation alternative fuels with activities
ranging from the development of feedstock (e.g., brassica carinata) (Agriculture and Agri-Food
Canada, 2015), to conversion into fuels and in the industrial qualification and demonstration of these
fuels both on ground (subject of this article) and in flight (Park, 2012).

The results on engine performance and air pollutant emissions, gathered from the alternative fuels
qualification testing conducted over the last seven years are presented here. The work was jointly
conducted by National Research Council Canada and Environment and Climate Change Canada and
funded through various Government of Canada departments.

Test platforms and fuels

As shown in Table 1, the benchmarking data was collected on various engine platforms ranging from
turbofan (F-404-400 and CF-700) to turbojet (TRS-18-046-1) to turboprop (T-56-A15) and using a
variety of aviation alternative fuels and their blends at both sea level and altitude conditions. In order
to provide a reference for comparison, the results collected using the alternative fuels were compared
with baseline petroleum-based Jet-A1 or JP-8 conventional fuels. Some selected engine specifications as
well as some key properties of the fuels, used in the various test campaigns, are given in Appendix A
(Table A1 and Table A2).

The first effort was undertaken in 2009 to qualify General Electric F-404-400 engine on a semi-
synthetic jet fuel, which was a 50-50 blend of conventional Jet A-1 and FT fuels (Hadzic et al., 2010).
The Synthesized Paraffinic Kerosene (SPK) FT fuel used was in turn a blend of coal-to-liquid (2/3 by
volume) and gas-to-liquid (1/3 by volume) fuels refined from SASOL and Shell respectively. Engine
performance, operability and emissions as well as engine durability, through accelerated mission
simulation tests (GE, 1976), were conducted under this test campaign.

This was followed by a novel effort in 2010 involving the evaluation of three different alternative fuels
under test-cell simulated altitude conditions (Chishty et al., 2011). The test fuels were: a fully-
synthetic FT SPK; a semi-synthetic 50-50 blend of FT-SPK and JP-8; and a semi-synthetic 50-50
blend of Camelina based HEFA SPK and JP-8. The test vehicle was a specially instrumented 1000 N-
thrust TRS18-046-1 turbojet engine from Microturbo. The experimental investigations included
steady state and transient engine operations as well as emissions measurements at nominal test-cell
altitudes (pressure and temperature) of 1,500, 3,000, 6,000, 9,000 and 11,500 m.
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The next activity was another engine qualification test campaign in 2011, this time using semi-
synthetic 50-50 blend of Camelina based HEFA SPK and JP-8 fuels on a Rolls-Royce/Alison T-56-
A15 engine (Chalmers et al., 2012). Engine performance, operability, high-temperature 50-hr dura-
bility (Allison Gas Turbine Division, 1985) and emissions aspects were investigated. A special objective
of the work was to test the use of alternative fuel on a nearly life-expired engine with more than
6,000 hours of operation after last overhaul. As such, post-durability teardown inspection was also
conducted and the hot-section components were subjected to material testing to assess the degradation
of these components.

The next series of tests were conducted in 2012 using a General Electric CF-700 engine core using a
100% unblended synthetic kerosene fuel with aromatics (SKA) manufactured through the Catalytic
Hydrothermolysis (CH) process (Davison et al., 2015). The feedstock for this fuel was a Canadian
industrial crop called brassica carinata. Two additional fuels namely, a fully-synthetic 100% FT SPK
and a semi-synthetic 50-50 blend of Camelina based HEFA SPK and JP-8 were also evaluated, back-
to-back. As with the previous three projects, the whole suite of engine performance and emissions
characterization was accomplished. This particular engine testing served to gain experience on the
novel unblended CH renewable fuel with aromatics, prior to the world-first 100% biofuel flight
conducted by National Research Council Canada (Park, 2012).

Recently in 2015, the TRS18-046-1 engine platform was used again to test another novel emerging
fuel called Hydrodeoxygenated Synthesized Aromatic Kerosene (HDO SAK) at test-cell simulated
altitudes (Canteenwalla et al., 2016). HDO SAK is composed of approximately 95% mono-aromatic
compounds. The special purpose of this testing was to investigate engine performance and emissions
when using blends of SAK fuel at various levels of aromatic content in the fuel and to compare the
results with conventional jet fuel. This testing also provided valuable information regarding differences
between synthetically produced aromatics and conventional petroleum based aromatics.

Test and measurement methodology

In all the test campaigns reported here, the following elements and measurements were compiled:

a) Operability runs to demonstrate engine functionality during cold and hot starts and transient
operations like rapid acceleration (slam) and rapid deceleration (chop).

b) Performance runs to document engine performance under steady conditions at idle, cruise and
take-off conditions.

Table 1. Overview of engine platforms and fuels tested during the test campaigns reported here.

Engines
Fuels & Blends

F-404-400 T-56-A15 CF-700 TRS-18-046-1

100% FT SPK Sea level Altitude

50% FT SPK in JP-8 Sea level Altitude

50% HEFA SPK in JP-8 Sea level Sea level Altitude

100% CH SKA Sea level

17% HDO SAK in HEFA SPK Altitude

9% HDO SAK in HEFA SPK Altitude
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c) Emissions measurements, gaseous and particulate matter, conducted at steady state engine oper-
ation.

d) Durability runs (accelerated or limited endurance) for the cases of F-404-400 and T-56-A15
engines. The results of durability tests are not part of this article.

e) Post-test engine teardown inspection for the cases of T-56-A15 and TRS-18-046-1. The results of
teardown inspections are not part of this article.

All static sea level tests, except for the T-56-A15 engine tests, and altitude testing were conducted at
the National Research Council Canada facilities in Ottawa. For the T-56-A15 tests, an outdoor test
stand was used. The engine installations for the four engines in the five reported test campaigns are
shown in Figure 1.

The sea level test cell has a cross section of 7.7 × 7.7 m and is 23 m long with a capacity for 360 kg/s of
airflow and 225 kN thrust. This test cell is also equipped with water injection exhaust cooling system
for afterburner operation.

The altitude test chamber operates up to 14,000 m at temperatures down to −50°C (−58°F) with
conditioned air flow up to 4.5 kg/s. This covers the entire operating range of the TRS-18-046-1 engine
and even allowed operation beyond its rated conditions. Both pressure and temperature altitudes can
be independently controlled. The chamber is 10 m long with an internal diameter of 3 m.

The measurement uncertainty related with the reported engine performance results was between
0.2% to 0.9% of full scale, with the higher uncertainty associated to the specific fuel consumption
(SFC) results. These uncertainty estimates include contributions from instrument calibration hier-
archy, signal processing and data reduction. As for the emissions results, the uncertainty in results was
below 2%.

Performance and operability

All test engines were instrumented with conventional instrumentation, typical of development work
for these engines, including static pressures and temperatures at engine inlet, fan exit, compressor exit

Figure 1. The four engines platforms used for testing. Clockwise from top left: F-404-400; TRS-18-046-1,

T-56-A15; and CF-700.
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and low-pressure turbine exit as well as surface temperatures on combustor liners. In selected cases, the
following special hardware was also used:

a) K-type thermocouples, to measure temperature distribution on the after burner liner (F-404-400).

b) Dynamic pressure transducers, for the acoustic measurements in the main combustor (F-404-400
and CF-700).

c) Dynamic pressure transducers, for the acoustic measurements in the after burner liner (F-404-400).

d) Ram air pressure and temperature (TRS-18-046-1).

Each alternative fuel was tested back to back with the baseline Jet A-1 or JP-8 fuel. The throttle cycles
and repeats were conducted (with slight modification for the T-56-A15 engine test) as follows:

1. Start, accelerate to idle and hold for 90 s then record emissions and performance data for
1 minute.

2. Slow acceleration to 95% shaft speed and hold for 30 s then record emissions and performance
data for 1 minute.

3. Slow deceleration to 80% shaft speed and hold for 30 s then record emissions and performance
data for 1 minute.

4. Slow deceleration to idle and hold for 30 s.

5. Slam (rapid acceleration) to 95% shaft speed and hold for 30 s.

6. Chop (rapid deceleration) to idle and hold for 30 s.

7. Shutdown.

8. Restart engine under hot conditions and repeat steps 1 to 6 above.

9. Switch to alternative fuel while at idle and hold for 60 s then record emissions and performance
data for 1 minute.

10. Repeat steps 2 to 8 above.

11. Switch to Jet A-1 fuel while at idle and hold for 60 s then record emissions and performance data
for 1 minute.

12. Repeat steps 2 to 6 above twice.

13. Shutdown.

Special fuel skids were designed and fabricated to ensure complete segregation of the alternative fuels
and the baseline fuel; to avoid cross-contamination; and to allow running switch from one fuel to
another without engine shut-down.

Emissions measurement

Emissions measurements were made to record gaseous species of carbon dioxide (CO2), carbon
monoxide (CO), nitrogen oxides (NOx) and total unburnt hydrocarbons (THC), as well as the
particulate matter (PM) number size distributions and PM mass. These continuous measurements
were made during the steady state operation of the engines. Several samples were drawn and analysed
to ensure repeatability and for statistical significance.

Non-Dispersive Infrared (NDIR) analyzers was used for CO2 and CO measurements while Heated
Chemiluminescent (HCLD) and Heated Flame Ionization (HFID) detectors were used for NOx and
THC measurements respectively. Engine Exhaust Particle Sizer (EEPS) spectrometer was used to
measure the particle number size distributions. Additionally, for the most recent tests on CF-700 and
TRS-18-046-1 engines, a high sensitivity Laser Induced Incandescence (HS-LII) instrument was also
used to measure black carbon emissions.

Sampling probes were designed and fabricated to obtain uniform sampling across the engine exhaust
with due consideration to allowable blockage at the engine exhaust. All measurements were made

Chishty et al. | Engine Performance/Emissions from Alternative Aviation Fuels https://journal.gpps.global/a/S5WGLD/

J. Glob. Power Propuls. Soc. | 2017, 1: 195–210 | https://doi.org/10.22261/S5WGLD 199

https://journal.gpps.global/a/S5WGLD/
https://doi.org/10.22261/S5WGLD


50 mm downstream of the engine nozzle exit plane. Sample from the engine exhaust was extracted and
was appropriately diluted to prevent condensation and to reduce the particle and gaseous concen-
trations to levels acceptable for the analyzers. The dilute exhaust was then transferred to the analyzers
via heated lines. The appropriate dilution factors were determined via separate laboratory tests. These
laboratory tests also helped in verifying the particle loss rate along the heated sampling lines.

Analyzers were calibrated at least three times per test day using ±1% purity gases. Similarly, EEPS was
sampled periodically to ensure no baseline drifting and its electrometer was cleaned at the end of each
test day to maintain optimum sensitivity of the instrument.

The measurement signals for the different gaseous compounds were converted to concentration (in
ppm) based on the calibration curves, which were then corrected for background concentration before
converting to emission rates following the procedure outlined in the SAE International, Aerospace
Recommended Practice 1533 (SAE International, 2016). Particle number emission rate calculations
followed the procedure outlined in Chan et al. (2011).

Results and discussion

All engine operability, performance and emissions data were corrected and normalized using standard
practises (Walsh and Fletcher, 2004), to minimize the effects of variations in ambient conditions and to
ensure that any differences observed in the results were due to change in the fuel type only. The SFC
values were also corrected by the fuel heat of combustion (LHV). Sample results are discussed in this
section and the maximum relative differences in main parameters of merits between baseline conven-
tional Jet A-1 (or JP-8) fuel and the alternative test fuels are summarized in Appendix B (Table B1).

Engine operability and performance

Operability checks involved recording various parameters like thrust/power, engine spool speed,
temperatures and pressures at various locations and engine vibrations during starts and transient
operations. The engine starts checks included both cold and hot starts, while the transients comprised
slow and fast accelerations and decelerations (slams and chops). A sample result of engine exhaust gas
temperature (EGT) during hot starts for F-404-400 engine is shown in Figure 2. No difference of

Figure 2. Engine hot start transient response: Sample result showing F-404-400 exhaust gas temperature

(EGT) profiles of Jet A-1 and 50% FT SPK.
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significance is observed from the use of alternative fuels relative to the baseline fuels. Similar results
were observed during the operation of T-56-A15, CF-700 TRS-18-046-1 engines.

Figure 3 shows the rapid acceleration profiles for three engines: F-404-400, CF-700 and TRS-18-046-
1 in terms of normalized engine speed and EGT. For TRS-18-046-1, the engine transient responses
are shown at two different altitudes, 3,000 and 6,000 m. Within the bounds of the experimental
uncertainties, the engine response from the use of alternative fuels was comparable to that of con-
ventional fuels.

During the steady state operation of the engines, many performance parameters were recorded
including thrust or power, fuel flowrate, air flowrate, engine speed, thrust SFC and temperatures and
pressures at various locations on the engine. Results from corrected SFC measurements are shown in
Figure 4 for all four engines. Results from multiple runs and in the case of F-404-400 and T-56-A15
results from pre- and post-durability tests are also shown. Within the limits of measurement

Figure 3. Rapid acceleration response of normalized engine speed (N) and EGT: (a) F-404-400, Jet A-1 vs.

50% FT SPK; (b )CF-700, Jet A-1 vs. 50% FT SPK; (c) CF-700, Jet A-1 vs. 100% CH SKA; (d) CF-700, Jet A-1

vs. 100% FT SPK; (e) TRS-18-046-1 at 3 km, Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK; (f)

TRS-18-046-1 at 6 km, Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK.

Chishty et al. | Engine Performance/Emissions from Alternative Aviation Fuels https://journal.gpps.global/a/S5WGLD/

J. Glob. Power Propuls. Soc. | 2017, 1: 195–210 | https://doi.org/10.22261/S5WGLD 201

https://journal.gpps.global/a/S5WGLD/
https://doi.org/10.22261/S5WGLD


uncertainty, none of the engines showed any noteworthy differences when switching from conven-
tional to alternative fuels.

Engine emissions

The gaseous emissions measurements included CO2, CO, THC, NO and NOX. In the case of F-404-
400, Sulphur Dioxide (SO2) emissions were also recorded. The gaseous emissions from alternative
fuels were found to be comparable to those from the conventional jet fuels on all the four engines, as
can be seen from the representative results for CO2 and NOX in Figures 5 and 6 respectively. Small
differences were observed in the CO2 emissions results that were attributed to the dependence on the
hydrogen-to-carbon ratio in the various fuels.

Figure 4. Corrected SFC results: (a) F-404-400, Jet A-1 vs. 50% FT SPK; (b) T-56-A15, JP-8 vs. 50% HEFA

SPK; (c) TRS-18-046-1 at 1.5 km, Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK; (d) TRS-18-

046-1 at 3 km, Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK; (e) TRS-18-046-1 at 1.5 km, Jet

A-1 vs. 17% HDO SAK, 9% HDO SAK and 50% HEFA SPK; (f) CF-700, Jet A-1 vs. 100% FT SPK, 100% CH SKA

and 50% HEFA SPK.
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As for the PM emissions, both the number density and mass were measured. In the case of CF-
700, Black Carbon (BC) mass was also measured. The results are shown in Figures 7 and 8
respectively. Even after discounting for the measurement uncertainties, the differences in PM
emissions from alternative fuels were quite significant compared to the conventional fuels and even
between the alternative fuels. These differences were attributed to the levels of sulphur, aromatics
and hydrogen contents in the fuels; the types of aromatics in the fuel; and hydrogen-to-carbon
ratio of the fuels (Canteenwalla et al., 2016).

Conclusions

The benchmarking data presented here was acquired during qualification testing using four dif-
ferent engine platforms and six different alternative fuels and blending components. The tests were
performed at sea level and at test-cell simulated altitude conditions. A summary of the results in
terms of percentage differences in SFC, CO2, NOX and PM from the use of alternative fuels,
relative to the baseline petroleum-based Jet A-1 or JP-8 fuels, is given in Appendix B (Table B1).
These percentage differences should be viewed in consideration with the measurement uncertainty
estimates reported in the test and measurement methodology section above.

In terms of engine performance and operability, the results validate the general understanding that if
the alternative fuels fall within the range of certified (e.g., ASTM) specification limits then their
performance would be comparable to conventional fuels and their use on current engines would be
transparent to the operators with no considerable differences in engine behaviour.

Figure 5. CO2 emissions results: (a) F-404-400, Jet A-1 vs. 50% FT SPK; (b) TRS-18-046-1 at four altitudes,

Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK; (c) TRS-18-046-1 at 3 km altitude, Jet A-1 vs.

17% HDO SAK, 9% HDO SAK and 50% HEFA SPK; (d) CF-700, Jet A-1 vs. 100% FT SPK, 100% CH SKA and

50% HEFA SPK.
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Similarly, the gaseous emissions from alternative fuels were also found to be comparable to those from
the conventional jet fuels with only a small degree of dependence on the hydrogen-to-carbon ratio of
the fuel that shows up in the CO2 emissions results.

As for the PM or BC emissions, the dependence on the fuel chemical composition is quite significant.
It was found that these emissions are strongly dependent on the level of hydrogen and aromatic
contents in the fuel; the type of aromatic constituents in the fuel; and the hydrogen-to-carbon ratio of
the fuel. All alternative fuels showed a reduction in PM/BC emissions, both in terms of number

Figure 6. NOx emissions results: (a) F-404-400, Jet A-1 vs. 50% FT SPK; (b) T-56-A15, JP-8 vs. 50% HEFA

SPK; (c) TRS-18-046-1 at four altitudes, Jet A-1 vs. 50% FT SPK, 50% HEFA SPK and 100% FT SPK; (d) TRS-

18-046-1 at 3 km, Jet A-1 vs. 17% HDO SAK, 9% HDO SAK and 50% HEFA SPK; (e) CF-700, Jet A-1 vs.

100% FT SPK, 100% CH SKA and 50% HEFA SPK.
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density and mass emission rates. Reductions as large as of about 90% were observed during certain test
campaigns.
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