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Abstract

This article evaluates the improvement in gas turbine combined
cycle power plant efficiency and output via pressure gain
combustion (PGC). Ideal and real cycle calculations are provided
for a rigorous assessment of PGC variants (e.g., detonation and
deflagration) in a realistic power plant framework with advanced
heavy-duty industrial gas turbines. It is shown that PGC is the
single-most potent knob available to the designers for a quan-
tum leap in combined cycle performance.

Introduction

Gas turbine combined cycle (GTCC) power plant is the most
efficient and least-polluting fossil fuel-based electric power
generation technology. Largely driven by turbine inlet tem-
perature (TIT) and pressure ratio, the Brayton cycle based
“J class” heavy-duty industrial gas turbines with more than
40% net thermal efficiency have been the foundation of
combined cycle power plants with field-proven 60+% net
thermal efficiency. Nevertheless, published ratings and field
performances show that the 30+ years old steady gain in
performance is rapidly approaching a plateau (Gülen, 2016b,
2017). Present state-of-the-art is 1,600°C TIT with cycle
pressure ratio of ~23. The enabling technologies are advanced
hot gas path (HGP) materials (superalloys), thermal barrier
coatings (TBC), film cooling techniques and 3D-aero design
software. The next class of machines (say, “K class” for the
purpose of discussion) are targeting 1,700°C TIT, which is
putting a big onus on Dry-Low-NOx (DLN) combustor
technology, superalloy capabilities and HGP parts manu-
facturability for commensurate film cooling effectiveness.
Additive manufacturing (commonly known as “3D Printing”)
and ceramic matrix composite (CMC) materials are two
promising technologies to facilitate successful deployment of
the K class in the next decade or so.

An alternative to the “brute force” approach of ever-increasing
hot gas temperatures is fixing the fundamental deficiency of
the Brayton cycle, namely, reduction of the cycle heat addition
irreversibility. (The other big Brayton cycle deficiency, cycle
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heat rejection irreversibility, is taken care of very successfully by the steam Rankine “bottoming cycle.”)
There are two textbook methods to achieve this end: (i) multiple heat addition steps in series and (ii)
constant volume heat addition. The former is deployed in commercially available units (i.e., GT 24/26
gas turbines with “sequential” or reheat combustion). The latter, which is the subject of this article, has
been on the draft-board for more than half century for aircraft propulsion, i.e., pulsed detonation
combustion, PDC (Kailasanath, 2000). The generic name for the practical devices approximating
constant volume heat addition is “pressure gain combustor.” The closest practical implementation of
the process is the explosive combustion inside the cylinder of a reciprocating internal combustion
engine (ICE).

The tremendous performance improvement potential of PGC within the context of land-based gas
turbines for electric power generation is investigated herein. Fundamental considerations and detailed
heat and mass balances show that 65+% net thermal efficiency is readily achievable with TITs well
below that of today’s J class units. (The reader is advised to read the Nomenclature section on page 6
before continuing to the main body of the article.)

Thermodynamics

The easiest way to demonstrate the performance difference between constant pressure and constant
volume is using an air-standard cycle approach in combination with “mean-effective temperature”
analysis. The Brayton cycle (constant pressure heat addition [CPHA]) with standard state-point
numbering is shown in Figure 1.

All four processes in this cycle, including heat addition, which is represented by the differential form of
the first law, are steady-state, steady-flow (SSSF) — as appropriate for a turbomachine. This is why the
Brayton cycle is an ideal “proxy” for a gas turbine.

The Atkinson cycle has a constant-volume heat addition step, which is a special case of the more
general uniform-state, uniform-flow (USUF) process as shown in Figure 2. The Atkinson cycle can be
considered as a proxy for Holzwarth’s “explosion turbine” (Stodola, 1927). This cycle, under the name
“Humphrey,” has been used as an ideal proxy for PDC-based pulsed detonation engines (PDE)
(Heiser and Pratt, 2002).

Figure 1. Brayton cycle (heat addition, dP = 0); cycle heat input is represented by the second Tds

equation.
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It was shown in an earlier article (Gülen, 2010) that the “correct” ideal proxy for a perfect turbo-
machine like a gas turbine should have a SSSF constant volume heat addition (CVHA) process (see
Figure 3). The cycle was referred to by the author as Reynst-Gülen (R-G) cycle since so far no
published reference has been found with its definition.

It can be shown via rigorous thermodynamic analysis that for the same precompression pressure ratio
(PR), P2/P1, and TIT, T3, the R-G cycle is more efficient than the Atkinson cycle because it has a
higher mean-effective heat addition temperature (METH). (See Smith and Gülen (2012) for defi-
nition and calculation of mean-effective temperatures.) In comparison, the METH for the Atkinson
cycle is the same as the Brayton cycle with the same cycle PR as Atkinson precompression PR and the
same TIT. The cycle efficiency benefit for the Atkinson cycle is due to its much lower mean-effective
heat rejection temperature (METL) vis-à-vis the Brayton cycle due to increased overall cycle PR. Thus,

Figure 2. Atkinson (Humphrey) cycle (heat addition, dv = 0); cycle heat input is represented by the first

Tds equation.

Figure 3. Ideal proxy for the CVHA cycle.
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for a combined cycle where the ideal METL is the same as the ambient temperature, Atkinson
(Humphrey) cycle has no benefit over the comparable Brayton cycle.

For numerical comparison, a Brayton cycle with TIT of 2,372°F (1,300°C) and PR of 13 is selected.
This is representative of an E class gas turbine, whose average simple and combine cycle ratings, 35.5%
and 53.2%, respectively, are obtained from a trade publication (Gas Turbine World, 2016). The
Atkinson cycle is calculated for two different cases: (i) same TIT and (i) same cycle heat addition (at
precompression PR of 13). The R-G cycle is also calculated for two cases: (i) same TIT as the E class
and (ii) TIT of 2,700°F (1,482°C, about the same as advanced F class) and precompression PR of 10.
The results are shown in Table 1.

The translation from the ideal proxy performance (subscript “id”) to the rating performance (subscript
“rat”) is done via the “Carnot Factor” (CF). Note that the air-standard cycle efficiency calculated as

Table 1. Ideal, air-standard cycle calculations (R = 0.068 Btu/lb-R, cp = 0.24 Btu/lb-R, γ = 1.4).

Brayton Atkinson/Humphrey CVHA-SSSF

PRprecomp 13.0 13.0 13.0 13.0 10.0

PRCVHA NA 2.6 3.3 2.6 3.2

PRCycle 13.0 34.1 42.5 34.1 31.5

TIT, °C 1,300 1,300 1,690 1,300 1,482

METHGT, °C 736 736 877 1,140 1,188

METLGT, °C 212 142 180 142 174

wcomp, kJ/kg 313 313 313 313 269

wturb, kJ/kg 820 1,003 1,295 1,003 1,105

wnet, kJ/kg 507 411 592 690 835

qin, kJ/kg 977 698 977 977 1,203

qin,mech, kJ/kg 20% 18%

qout, kJ/kg 469 287 385 287 368

Ideal efficiency 52.0% 58.9% 60.6% 70.7% 69.4%

Rating efficiency 35.5% 40.1% 41.2% 48.1% 47.2%

CF 0.680 0.680 0.680 0.680 0.680

METLCC, °C 15 15 15 15 15

Ideal efficiency 71.5% 71.5% 74.9% 79.6% 80.3%

Rating efficiency 53.2% 53.2% 60.7% 64.5% 65.0%

CF 0.75 0.75 0.81 0.81 0.81

Note that ideal, air-standard Brayton cycle efficiency is a function of cycle PR only; however, TIT influences the combined cycle efficiency.
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η = −1 METL
METHid (1)

is the efficiency of the “Carnot-equivalent” cycle with isentropic compression/expansion and iso-
thermal heat transfer at METL and at METH. The proximity of the actual (rating) efficiency to
the ideal, expressed as a fraction, i.e., CF, is a very good measure of the technology state-of-the-
art. For state-of-the-art F, G, H and J class gas turbines, using an ideal cycle basis (but not air-
standard), 0.75 and 0.81 are very reliable average CF values for simple and combined cycle,
respectively (Gülen, 2013b). On an air-standard cycle basis, 0.68 is a good CF value for simple
cycle whereas 0.75–0.82 is a good range for TIT of 1,300–1,600°C on ideal (but not air-standard)
basis.

The advantage of CVHA over CPHA, six percentage points in terms of CC efficiency from Table 1, is
best illustrated by a comparison of the respective cycles on the temperature-entropy (T-s) plane (see
Figure 4). For the same TIT as the base Brayton (CPHA) cycle, the R-G cycle has about 730°F (~400°
C) higher METH with 2.6 times the cycle PR. About 20% of the cycle heat input is converted into
mechanical energy by increasing the pressure of the cycle working fluid. The resultant reduction in
cycle heat addition reversibility is quantified by the comparison of the two shaded rectangles on the T-s
diagram.

Reynst envisioned a hybrid or turbo-compound cycle where the combustor of the gas turbine is
replaced by a two-stroke reciprocating engine, based on the three-process Lenoir cycle (missing the
isentropic compression process), whose shaft drove a compressor. Reynst calculated the efficiency of
that ideal constant volume combustion (CVC) cycle as a function of its precompression pressure ratio,
PR′, and T1 as follows (Equation 12 on page 151 of Reynst, 1961):
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where k = 1−1/γ and γ is the specific heat ratio, cp/cv. In fact, Atkinson and Reynst’s ideal CVC cycle
are identical for the same non-dimensional heat input parameter, θ. Furthermore, Atkinson and R-G
cycle efficiencies as a function of PR′ and cycle heat addition are also given by the same equation with
cp in the denominator of Equation (3) for the R-G cycle (Reynst, 1961).

Figure 4. Comparison of E class Brayton cycle with CPHA and the R-G cycle.
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Note that the R-G cycle is a theoretical construction with no information regarding its practical
implementation. Conceptually, the SSSF, CVHA process between state points 2 and 3 in Figure 3 can
be envisioned as an (imaginary) “topping” Brayton cycle gas turbine with CPHA, in which the
imaginary turbine drives the imaginary compressor with no net output.

Similarly, the Atkinson/Humphrey cycle is also a theoretical construction, where the USUF, CVHA
process between state points 2 and 3 in Figure 2 can be envisioned as an (imaginary) “topping”
reciprocating (piston-cylinder) ICE. This imaginary ICE works against the back pressure P3 and thus
the expansion stroke produces no output whereas the compression stroke work, v2·(P3−P2) must be
debited against the net output of the main engine. This is why, for the same precompression PR and
TIT (or θ), the Atkinson cycle severely under-predicts the performance potential of CVHA and also
why the R-G is theoretically correct proxy for a gas turbine with PGC.

As shown in Table 1, with E class TIT and precompression PR, the ideal proxy for a PGC cycle
predicts a realistic CC efficiency of 62%. Presently, the next goal post for GTCC performance is set at
65% net thermal efficiency. Earlier studies indicate that this requires nearly 45% GT efficiency with a
TIT of 1,700°C (3,092°F, commensurate cycle PR is around 25) (Gülen, 2013b). However, as the last
column in Table 1 shows, this efficiency can be reached with a PGC gas turbine fired at only 2,700°F
(less than 1,500°C). Next, the possibility of this performance prediction is going to be investigated
using a “real cycle” analysis.

PGC in practice

Theoretical benefit of constant-volume combustion with simultaneous temperature and pressure rise
from an ideal cycle perspective is impressive and unassailable. There are several methods to implement
a less-than-ideal but still attractive combustion process with pressure gain. The most obvious and
already available method is to use a reciprocating ICE as the combustor (e.g., a “turbocompound”
engine á la Napier’s Nomad aircraft engine or Scania truck engines Gülen, 2013a). A recently
proposed turbocompound reheat gas turbine cycle for small CC applications (about 100 MWe)
utilizes this concept (Gülen, 2016a). Unfortunately, for utility-scale large gas turbines, limited mass
flow capacity of even the largest ICEs makes this an infeasible prospect.

The only possibility for an adiabatic and steady flow process with pressure rise is a supersonic flow with
a standing shock wave (idealized as a discontinuity in the flow field.) Similarly, the only possibility for
a steady flow process with pressure rise and heat addition is a supersonic flow with a standing
detonation wave. It is not possible to design a combustor with steady supersonic flow (Mach number
of about 3 to 4) and a standing detonation wave in a land-based power generation turbine. The only
possibility is to create detonation waves at a high frequency (say tens of times per second) inside a
semi-closed channel (tube) utilizing a suitable ignition system. The inherent unsteadiness of the
practical detonation combustion led to the concept of intermittent or PDC, which has been seriously
investigated for aircraft propulsion systems for more than half a century (Kailasanath, 2000).

Mechanical problems associated with the PDC (structural integrity of turbine blades, vibration,
acoustics, high stress and fatigue) has been a big impediment in development of aircraft engines
utilizing the technology. Rotating or continuous detonation combustion (RDC) concept is a variant,
which has the potential of overcoming most of those problems (Lu et al., 2011). Either PDC or RDC
is readily applicable to land-based gas turbines for power generation.

Dynamic pressure exchangers or “wave rotors” have also been investigated for pressure gain in com-
bustion. A wave rotor (WR) is a rotating, cellular drum between inlet outlet manifolds (Nalim, 1999).
The flows inside the manifolds are steady, which is a significant advantage over the PDC with strongly
unsteady, pulsating flow. Pressure gain is generated inside the rotor cells via shock waves generated by
stoppage of the outlet flow and compression of the inlet (charge) flow via rotation between the
manifolds. While the concept sounds too esoteric at first glance, it should be noted that the Comprex
supercharger developed by Brown Boveri Co. to be used in diesel engines was essentially a WR.
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Valveless (also called aero-valved) pulse combustor is another method, which generates only a modest
pressure gain. It is a variant of the valved pulse combustor used in German V-1 “Buzz Bomb” in
WWII (Gülen, 2013a). The mechanical “flapper” valve is replaced by an inlet pipe, which acts as an
acoustically modulated aerodynamic valve (i.e., no moving parts).

From a land-based, electric generation perspective the key engineering design criterion is the rela-
tionship between pressure and temperature ratios, PR and TR, respectively, in the PGC and the
requisite fuel-air ratio (FAR). From that perspective, PDC offers the largest efficiency gain potential
but is beset by many design challenges, primarily the problem of integration between the unsteady
outlet gas flow and the steady turbine flow. For large heavy-duty industrial GTs (HDGT), relevant
TR range is 2.0–2.5. Pressure rise potential of PDC and WR (using the “perfect” CVC relationship
Nalim, 1999) are shown in Figure 5. (Pulse combustion PR is too low to be of much significance,
i.e., less than 1.10.) The PDC PR-TR relationship is derived from detailed detonation calculations as
described in the Appendix. The result is in good agreement with formulas developed by different
researchers (Tangirala et al., 2007).

“Real cycle” analysis

Present state-of-the-art in land-based, heavy-duty industrial gas turbine technology is the “J class” with
1,600°C TIT and PR of 23. Largest J class HDGTs are 50 Hz machines rated at nearly 500 MWe
generator output and more than 42% thermal efficiency (Gas Turbine World, 2016). Smaller 60 Hz
machines are rated at about 350 MWe with similar efficiency. On a combined cycle basis, J class
HDGTs have more than 61% thermal efficiency rating. As the basis of the real cycle analysis, a 60 Hz J
class HDGT with 700 kg/s (nominal) airflow, PR of 23 and TIT of ~1,600°C is assumed. Thermoflow’s
Inc.’s Thermoflex (2016) software is used to model the gas turbine with appropriate chargeable and
nonchargeable cooling flows (see Figure 6).

The bottoming cycle, comprising the heat recovery steam generator (HRSG), the steam turbine
generator (STG) and the heat rejection system (once-through, open-loop water-cooled condenser with
40 mbar steam pressure), is modelled in Thermoflow’s Inc.’s GT PRO (2016) software. A 2,400 psig
(165 barg), 1,112°F (600°C) steam cycle is chosen with state-of-the-art STG technology and suitable
exhaust annulus area. The combined cycle net performance is 505.3 MWe and 61.7% thermal
efficiency with 174 MWe STG and 8.2 MWe plant auxiliary load (1.6% of the gross output). Gas
turbine performance fuel heating to 410°F (210°C) with IP economizer feed water is used.

Figure 5. Pressure-temperature ratios for PDC and “perfect” CVC.
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The base HDGT in Figure 6 is modified by replacing the combustor with a PGC and adding a booster
compressor (BC) as shown in Figure 7. The BC ensures that chargeable and nonchargeable cooling
flows for the turbine stage 1 are delivered from the compressor discharge, which is now at a lower
pressure. This is so because part of the compression duty is taken over by the quasi CVC in the PGC.
(Note that the specific volume ratio across a PGC is less than unity; e.g., about 0.6 for a pulse
detonation combustor.) Thus, hot gas pressure at turbine stage 1 is in fact higher than that at the
compressor exit.

PDC is assumed to be the particular PGC process. The PDC is modelled in Thermoflex as a
dummy compressor-combustor combination controlled by a script (to implement temperature and
pressure rise via Equation (A-1) in the Appendix along with the fuel consumption via a heat
balance). A pressure-temperature changer accounts for pressure and purge-air-dilution loss (5% and
~100°C, respectively) between the PDC and the turbine inlet (see Figure 8). The unfavourable
impact of the pulsating gas flow, somewhat “smoothed out” in the transition piece between the

Figure 7. Gas turbine with pressure gain combustor.

Figure 6. J class gas turbine model and performance.
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PDC and stage 1 nozzle, is quantified by a two percentage point debit to the stage 1 isentropic
efficiency.

The PDC cycle performance is calculated for different TIT and precompression PR combinations.
Fuel compression is not included (i.e., pipeline pressure is assumed to be high enough). However,
0.5% transformer loss is accounted for. Booster compressor load is debited to the plant auxiliary load.
Selected results are listed in Table 2.

Rigorous heat and mass balance calculations summarized by the performance numbers in Table 2 fully
confirm the ideal R-G cycle predictions in Table 1. The results also unequivocally demonstrate that, as
predicted by fundamental thermodynamic considerations, the Atkinson/Humphrey cycle is not the
correct ideal proxy for gas turbines with PGC. It significantly underestimates the performance
improvement potential of PGC in a combined cycle configuration.

With TIT and cycle PR comparable to those representative of today’s F class technology (~1,500°C),
detonation combustion gas turbine is capable of almost 64% net CC efficiency. The 65% goal post is
feasible with state-of-the-art J class TIT. Furthermore, as represented by the ratio of STG and GTG
outputs, the performance increase is largely due to “topping” cycle (i.e., the gas turbine) improvement.
Considering that each kilowatt from the bottoming cycle is nearly six to seven times as expensive as a
kilowatt from the topping cycle, PGC is a truly cost-effective method of achieving significant CC
efficiency improvement.

Using the budgetary price numbers from Gas Turbine World (2016), i.e., $225/kW for GTG and
$1,500/kW for the bottoming cycle (using STG output), the base J class GTCC of Table 2 costs about
$340 million or ~$670/kW. However, with the same $/kW prices, the PGC variants cost around
$600/kW. Consequently, in order to be on an equal footing with the base GTCC on a $/kW basis, the
price of the gas turbine with PGC can be raised to ~300/kW.

PDC has been investigated for more than a half century with an eye on aircraft propulsion applica-
tions. So far, significant engineering design challenges such as noise, vibration, fatigue, durability, etc.
prevented its successful commercialization (Lu et al., 2011; Roy et al., 2004). The absence of weight
and volume limitations (up to a point) in a land-based power generation application, renders a
satisfactory resolution of some of the most pressing problems possible (e.g., sturdy design of combustor
components, space for deflagration-to-detonation [DDT] transition). Whether the theoretical per-
formance potential calculated herein via Chapman-Jouget theory will survive a realistic design with
myriad imperfections (e.g., imperfect mixing of fuel and air, unsteady initial conditions, pressure-
temperature and composition variation downstream of the detonation wave, etc.) remains an open
question.

Figure 8. Implementation of the PDC in the Thermoflex model.
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Nevertheless, even with a more modest approach
using a dynamic pressure exchange (wave rotor)
PGC with the “perfect” CVC model for TR-PR
prediction, significant CC performance potential
is present (see Figure 9). In this case, 64+% CC
efficiency is achievable with a TIT of 2,900°F
(~1,600°C), same as today’s state-of-the-art J class
gas turbine.

As an indirect substantiation of the performance
prediction in Figure 9, consider a small power
station concept disclosed in a recent patent
(Gülen, 2016c), which approaches the imple-
mentation of CVHA in an actual power gen-
eration system more modestly. The turbo-
compound reheat GT combined cycle is a hybrid
power station comprising two different types of

Table 2. Gas turbine with PDC — Rigorous heat and mass balance model results (TIP: Turbine Inlet

Pressure).

Base Pressure gain combustion

GTG output, kWe 339,531 438,104 418,721 398,958 405,541

Heat input, kWth 819,518 892,497 857,284 821,360 848,679

GTG efficiency 41.43% 49.09% 48.84% 48.57% 47.78%

Texh, °C 629 612 593 573 595

mexh, kg/s 700 702 701 700 701

Precompression PR NA 13.6 13.6 13.6 11.9

P2, bara 24.8 13.8 13.8 13.8 12.1

T2, °C 490 371 371 371 346

PDC PR NA 1.854 1.810 1.765 1.821

Cycle PR 23.1 25.2 24.6 24.0 21.7

TIP, bara 23.4 25.6 24.9 24.3 22.0

TIT, °C 1,593 1,593 1,538 1,482 1,482

STG output, kWe 173,722 166,265 156,082 145,705 157,194

CC gross output, kWe 513,253 604,369 574,803 544,663 562,735

Plant auxiliary load, kWe 7,912 24,672 23,001 21,330 19,662

CC net output, kWe 505,341 579,697 551,802 523,332 543,072

CC net efficiency 61.7% 65.0% 64.4% 63.7% 64.0%

Figure 9. Combined cycle efficiency with PGC gas

turbines.
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prime movers: a recip-engine genset and a gas turbine. The system is shown schematically in Figure 10.
In a “proof of concept” 5 × 1 configuration (i.e., five gas engines and one gas turbine) with modified
off-the-shelf equipment and two-pressure, non-reheat bottoming cycle it is rated nominally as a
115 MW and 57.5% net (ISO base load) small power station with E class TIT (Gülen and Boulden,
2015). The piston-cylinder of the recip-engine genset serves as a constant-volume combustor (with a
high exhaust pressure and reduced shaft output). The efficiency is enhanced by a second combustion
(reheat) with a net gain of nearly 4.5 percentage points in combined cycle efficiency with a modest
two-pressure bottoming cycle.

Conclusions

Application of PGC to a land-based gas turbine for electric power generation holds promise towards
65% net combined cycle efficiency at J class TITs. Numerical evaluation of combined cycle efficiency
improvement via two different methods, i.e., ideal air-standard cycle analysis and rigorous, fully
physics-based heat-and-mass balance models, lead to consistent results. Even at F class level of firing
(about 100°C lower TIT) 63.5% net CC efficiency is possible (which is 1.5 percentage points better
than the J class GTCC efficiency). Heavy-duty industrial gas turbines provide the design engineers
with a sturdier and larger framework to work in to overcome the usual challenges associated with the
deployment of PGC in aircraft engines. Reduced bottoming cycle contribution should shift the plant
cost towards the topping cycle, which is much cheaper on a per kilowatt basis. Since new technologies
under development such as additive manufacturing and CMC materials are equally applicable to gas
turbines with PGC, efficiencies well beyond 65% are conceivable in a not-too-distant future.

Nomenclature

The primary unit system used by the author in calculations described herein is the US customary
system. Data in tables and figures are converted to SI; however, temperatures in the text are usually
expressed in both systems.

Figure 10. Turbocompound reheat GT combined cycle. IC: Intercooler, AC: Aftercooler, CMB: Gas turbine

combustor, TRB: Gas turbine (no compressor).
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Acronyms are defined where they first appear in the text (some of them also appear in the equations,
e.g., PR).

Standard notation is used for fluid properties, i.e., P, T, v, h, u, s, cp, and cv, for pressure, temperature,
specific volume, enthalpy, internal energy, entropy and specific heat at constant pressure/volume,
respectively.

Cycle state-points are numbered per Figures 1–3 (1 through 4).

Subscripts in, out, air, fuel and mix are self-explanatory. Subscripts exh, id, rat, comp and turb denote
exhaust, ideal, rating, compressor and turbine, respectively.

k = Isentropic exponent (i.e., 1−1/γ)
q̇ = Rate of heat transfer, kJ/kg (Btu/lb)

γ = Specific heat ratio

η = Efficiency

θ = Nondimensional heat transfer

τ = Nondimensional temperature, T/T0, where T0 is 59°F (15°C)
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Appendix

The detonation problem requires the solution of the jump equations describing the two adiabats,
i.e. the leading “frozen” shock with no chemical reaction and the detonation adiabat representing all
possible end states for the combustion process. It can be shown that the only possible solution to
detonations in a semi-closed pipe or tube of length L where the detonation is initiated at the closed
end (x = 0) and propagates towards the open end (x = L), is a Chapman-Jouget (C-J) detonation
(Landau and Lifshitz, 1987). The detonation combustion calculations are based on the five-stage
PDC cycle described in Goldmeer et al. (2008). Specifically, compressed air from the GT com-
pressor is mixed with fuel. The combustible mixture (i.e. reactants) fills the detonation chamber,
which is a semi-closed tube. The detonation starts (the method is not specified) instantaneously at
the closed end of the tube, which is filled with a (premixed) fuel-air mixture. The detonation wave
is a C-J wave, which is the only possible solution (e.g. see Landau and Lifshitz, 1987). The C-J
shock wave, idealized as a pressure and temperature discontinuity, propagates towards the open end
of the tube. Downstream of the C-J wave, the fluid comprises the complete combustion products. A
rarefaction wave follows the C-J wave and satisfies the boundary condition of zero velocity at the
closed end of the tube, x = 0. The pressure of the combustion products drops across the rarefaction
wave and the C-J wave exits from the open end of the tube, at x = L, where L is the length of the
tube. An expansion (rarefaction) wave starts at the open end and moves to the closed end of the
tube. A further drop in the pressure takes place across the expansion wave. The burned combustion
products evacuate the tube, which is now ready for the next cycle to start with purging and then
filling with fresh fuel-air mixture. The entire cycle is repeated and results in a “periodic high-
pressure zone near the closed end of the tube (Kailasanath, 2000).” In a GT, the fresh air for the
detonation process and the purge air are supplied from the discharge of the compressor and the
combustion products exiting the tube expand through the turbine section to generate useful shaft
work.

The following data is known (or assumed):

1. Fuel mass flow rate, temperature and composition (i.e. natural gas as 100% CH4)
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2. Air composition, pressure, temperature and mass flow rate (same as the base GT case) at the exit of
the compressor

3. Purge flow rate is assumed to be 20% of the total of air mass flow rate that enters the reaction and
the fuel flow

Pertinent assumptions implicit in the calculations are as follows: The flow in the PDC chamber, which
is a circular tube with constant cross-sectional area, is one-dimensional (1-D), inviscid and adiabatic.
Reactants (i.e. fuel and air) and combustion products are ideal gases with properties per JANAF model
(Stull and Prophet, 1971). In other words, they are not assumed to be calorically perfect. Valve(s) that
control the cycle processes open and close instantaneously with no losses. Pressure losses in the PDC
are ignored. Static pressure and temperature inside the detonation chamber are assumed to be the same
as total values at the compressor exit. The fuel-air mixture at the beginning of the detonation is
assumed to be at the static pressure of the compressed air. Total pressure and temperature at the PDC
exit are calculated using stagnation formulas for state 4. The state of the working fluid at the turbine
stage-1 nozzle inlet is determined by mixing with purge air. Mixing with purge air is assumed not to
change the total pressure.

The calculation sequence is as follows:

1. Calculate composition, total enthalpy and temperature of the unreacted air (from the compressor
discharge) and fuel gas mixture (state 1).

2. Calculate the state of the combustion products downstream of the C-J wave following the theory
outlined in Thompson (1988), state 2. The hydrodynamic solution of the shock problem involves
three jump conditions (written for a reference frame that is moving with the shock front) and the
ideal gas equation of state. The solution is iteratively obtained in Excel using the SOLVER add-in
to determine the four unknowns from the four equations.

3. Use the PR relationship for the centred (isentropic) rarefaction fan (from Equation 3-24b in
Liepmann and Roshko, 1957) to calculate the properties of the combustion products downstream
of the rarefaction wave part of the C-J detonation, state 3.

4. Use the isentropic formula and the overall heat and mass balance to calculate the total properties
of the state downstream of the expansion wave, state 4. The centred expansion wave starting from
the open end of the tube and propagating towards the closed end carries with it the “information”
that the detonation wave has exited the tube with the ensuing drop in pressure. In laboratory
experiments, this final expansion (or blow-down) empties the detonation tube and the exiting
combustion products end up with the reservoir pressure. Herein, the final pressure at the exit of
the PDC, labelled as state 4, is determined from the isentropic p-T relationship and the overall
PDC heat balance. This method is different from the time-averaged PR for the detonation
combustion, which is the ratio of the time-averaged total pressure at the PDC exit to the time-
averaged total pressure at the PDC inlet.

5. Calculate the final state, i.e. state 5, after mixing with the purge air (pressure losses are neglected.)
Calculate the final temperature before the entry to the turbine section by mixing the combustion
products with the purge air and calculating the enthalpy via simple energy balance.

A conceptual representation of the states 1 to 4 is shown in Figure 11, which qualitatively depicts two
pressure transducer signals recorded at two different PDC tube locations in experiments. The numbers
are representative for a C-J detonation propagating into a fuel (100% CH4)-air mixture (fuel-air-ratio
of ~ 0.04) at Ma = 3.72.

Calculations are done for a range of precompression PRs, ranging from 2 to 8, and FARs, ranging from
0.009 to 0.035. The results are cast into transfer functions to be used in GT performance calculations.
For typical gas turbine cycle calculations, the temperature ratio across the combustor (TR) is a given
(i.e., via TIT or T3) and the PDC pressure ratio is given by:

= ⋅ +TRPR 0.5289 0.3751 (A-1)
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In the equation above, TR is the nondimensional PDC tube exit temperature T/Tmix, which, in the
cycle notation of the states, is T3/T2 or, in the detonation wave notation in Figure 11, T5/T1. For the
calculation of the reactants temperature, the following relationship is used:

=
⋅ + ⋅ ⋅

+ ⋅
T

c T FAR c T

c FAR cmix
p,air 2 p,fuel fuel

p,air p,fuel
(A-2)

where FAR is the fuel-air-ratio. Fuel mass flow rate is calculated from the heat and mass balance of the
PDC control volume in Figure 8. The results can be cast into a transfer function for FAR, i.e.

∝
⎛

⎝
⎜

−
− τ

⎞

⎠
⎟FAR 1 TR

TR 175/ 2

1.1106
(A-3)

with a proportionality factor of 1.9.

Figure 11. Conceptual C-J detonation states (state 5 is not shown).
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